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IN MEMORIAM.

SEMEN ZAIKiAROVICH BELEN'KIY

.!:;ý'well known theoretical physicist, head.ýof' the Theoretical Divi-

sion..brf-4fhysics Institute, Doctor of' Physical and Mathematical Sciences
Do.* .

SemenZalcharovich Belen'kiy died on 21 September 1956.

-.semen Zakharovich was bo'rn in Moscow in 1916. Even before being

* ~gradua.ted in 1938 from the Physico faculty of the Moscow State University

he beq ganzs'c ie n t if ic work in the field of theoretical physics. For many

e yer Ithe,.principal place in his activity was occupied by resArch into
~~~~*7K"8.- prcss dcu'r ifg-'in,' c~smic rays. The results he obtaindints

(19)48) and subsequently developed in many later articles, were highly

praised and universally acknowledged in the world's literature. Semen

Zakharovich also obtained original and interesting results in the field

of hydrodynamics. He devoted much effort to the solution of important

applied problems.

FTD..TTý-62-958/1+2 -1



In 1954 a new stage began in his scientific activity, in that he

embarked on research in the nuclear collisions of high-energy particles.

This question, as is well known, is the center of attention of modern

physics and is at the same time one of the most difficult problems. But

here, too, Semen Zakharovich discovered new possibilities and arrived

at important conclusions which are attracting ever-increasing attention

both here and abroad.

Semen Zakharovich made far-reaching plans for research on the theory

of collisions and multiple particle production, and this problem occupied

him until his last days.

His services were rewarded with an Order of Lenin, the Papaleksi

Prize, and the Stalin Prize. He took an active part in social life and

was a member of the Communist Party of the Soviet Union since 1939.
eS

Semen Zakharovich paid much attention to the training of youth.

The work of a group of graduate students and the preparation of many

dissertations were carried out under his guidance. As a leader he was

most exacting and had a tendency to allow independence of work. He was

able, without restricting the students' initiative, to help find the

correct way with a few remarks.

Semen Zakharovich loved science, devoted all his efforts to it,

was highly active and only a few knew how sick he was during the last

years.

His associates, co-workers, and graduate students will never forget

his high scientific principles, clarity of thought, directness of expres-

sion, and human qualities.

His untimely death struck particularly hard those who knew him clo-

sely and who marched on his side for many years. It is difficult to be-

lieve that we shall never see him again.

- Staff Members of the Theoretical Division

FTD-TT-62-958/1+2 - 2 -



FROM THE EDITOR

The present volume contains two papers by S. Z.:Belenkiy.- The,

article "Contribution to the Theory of Flow of Super'sonib"'Gas Past-ýa

Wedge" was written in 1945, while the article "Hy..kdrodynamic ",Equations5 y'.

with Aooount of Radiation" dates baolc to 1948. I -j.~.~

Failure to publish these articles in time, a46ien ;ýniu.

sequently Belen 'kiy, as far as was kniown, did, not: la.,,,'ý-ubisf-

Inasmuch, however, these articles contain interestiihd!mat~rei 11t r''

publication in the Trudy of the Physics Institute. in -tit-fl~s .

were found in Be len kiy a papers seems advantage ous'."-,o k..

The scientific activity of S.Z. Belen'kiy, washý only b rie fly

touched upon in the obituary in the present volume-ziwa s rd e 1i neatte

in detail in the journal "Uspekhi f izicheskikh nAuk!"1.?fo 4t`al7,1,V0l 1,'0 .

where a bibliography of his scientific papers can beýfo ,und*.ý *.

FTD-TT-62-958/li-2 -3-
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of; L. a*tream :of sa~tsproi sp ee.d,ý:pa` tra.b6ZIy,.1,Ifideed;-,if the

edge W hthl%'eoal:. rounded oft, the..v e -`yt dg itself a

"4..-.d~'. "e .,lz~b.,A~h same time'&', sal- j: d Ve, 6f g~a:6'pnigo

-should sieddata h-:ri -BtAh"the velocity of

* the -`gas.e,5*ceed sthe',Vi 1 c ity of sound,'then upon 'expahsion-,of the jet,

fllows~ from the* Bernoulli equation;'e-t ve 4te a n

bodyesan thereforo e cannot vanish-. In..order foz' he fl past the
bodý t--bc'oe;possible, a discontinuity. surface must arise in front

of .~i body~ a compression shock, the presence of which makes it pos-

sible'.to'satisfy the boundary conditions on the surface of the body.

* f. the edge of the body is sharp, then the differential equations

ofA adyaics lead to multiple-valued solutions in a definite region

ofI space .(one point in space corresponds to several values of the ve-

locity), which 'is physically meaningless. Therefore a compression shock

must be produced in front of the body, away from the sharp point, even

at large tip angles.

Even If the contour of' the body Is such that the tangent to the

contour at the forward point is parallel to the velocity of the incoming

stream, and further on the contour bends smoothly, a unique solution may,

nevertheless be impossible and a compression shock arises at a certain

14~



t.ýe.stream.m Bec6ause::.of the presen6e'eOf,"discontinuity surfaces, the

plOtting:of theflow..past bodies aina.,supersonic stream is an exceed-

• 11 • complicated problem which'has-been solved for only a few parti-:!,.-..-

• o e~t:o ls.. ... 'for'.:.•, ". unthe

"'One such case is the flow past a dihedral angle (wedge). However,
<.•:.° " even•.in the""investigation of this very- simple problem, we encounter the

.. ;so-.cal-led "duality" of the solutions of gasdynamics for the'Odisoontinui-

.- tip-, a duality which has been subjected to many discussions.

. .If, by virtue of the streamlining conditions, the supersonic

stream must turn through a certain angle which is smaller than 1800,

then, according to the equations of gasdynamics, for specified stream

velocity and turning angle, such a turn can be realized in two ways:

1).an oblique compression shock can be produced nearly normal to the

velocity of the incoming stream, and the velocity behind this shock, as

will be shown below, is always smaller than the velocity of sound; 2)

an oblique shock farther away from the vertical than in the first case

can arise, and the velocity behind it becomes subsonic or supersonic,

depending of the velocity of the stream and the turning angle, but al-

ways larger than in the first case. In principle, both flow modes are

possible. Usually the problem of the duality of the gasdynamic solution

is considered applied to flow past a wedge, although of course it has a

more general significance.

Experiment has shown that in flow past a wedge the mode realized

corresponds to a high velocity behind the shock.

To explain this phenomenon theoretically, Roy [11] proposed that

such flow can occur and be connected only with a minimum change in

entropy, while Epstein [1] proposed to start from the minimum principle

for the Hamiltonian. These criteria are quite arbitrary and can there-

-5-



fore not be regarded as convincing. Levinson (2) considers the stabi-

lity of oblique shocks by the small oscillation method. The author

reaches a conclusion that' the only stable shocks are those for which

the continuous velocity component parallel to the discontinuity (tan-

gential) exceeds the velocity of sound ahead of the shock. It is easy

to see that this conclusion contradicts the invariance of the gasdyna-

mic equations under a Galilean transformation. Actually, it is always

possible to change over to a coordinate system in which the tangential

component of the velocity is smaller than the velocity of sound or is

even equal to zero. It is obvious that in such a coordinate system the

stability conditions cannot change. Thus, Levinson's work seems to be

incorrect, since it contradicts the Galilean principle.

As regards the stability of compression shocks against small per-

turbations, this stability was investigated by Landau (31 for a straight

shock, and it was shown that straight shocks are always stable (in ag-

reement with experiment). This conclusion is valid, of course, for

oblique shocks too.

In the case of flow around a wedge, the discontinuity has a sharp

point, coinciding with the sharp point of the wedge. This case, strict-

ly speaking, calls for an additional investigation of stability, which

so far has not been performed by anyone. However, on the basis of the

considerations which we shall develop in Section 3, it seems to us that

such an investigation would not lead to new results.

Let us point out here that the problem of flow past a wedge, in

the formulation used for its analysis so far, is of no interest from

the physical point of view. One usually investigates a flow past an in-

finite dihedral angle and the solution obtained thereby is dual.

Any real body is finite, ana' the .:alidiy of -he abstraction em-

.,-!.,B- a leplye -: '--. ..:... fart: f : -ss:ii
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to refine the formulation of the problem and to consider flow past a

finite body, having a wedge-like end, in order to get rid of the dual-

ity of the solution. The necessary requirement that the boundary condi-

tions be satisfied should lead to a unique choice of one of the possible

solutions.

The derivation of a definite solution in the case of flow past a

wedge does not mean at all that in all cases of turning of a supersonic

flow this is precisely the solution obtained. To the contrary, we can

point out examples in which a solution is obtained, for which the velo-

city behind the shock is smaller than the velocity of sound. Thus, in

flow around a body with a rounded front end, the shock produced in front

of the body bends in such a way, that the velocity behind it is smaller

than the velocity of sound in some regions and larger in others.

It is obvious that by formulating a physically sensible problem

concerning the flow around a body of arbitrary form, with account of

conditions on the surface of the body and at infinity, we should always

obtain a unique solution of the problem. At the present time unfortun-

ately we cannot prove this premise as a rigorous mathematical theorem.

§2. OBLIQUE COMPRESSION SHOCK

Let us present a few relations from the theory of an oblique com-

pression shock.

We shall designate with the index 1 quantities pertaining to the

stream ahead of the shock, and with the index 2 quantities pertaining

to the stream past the shock. The fundamental equations of gasdynamics,

as applied to an oblique shock, are written in the following fashion:

= (1)
p,-p sv,(. -PV., ) (2)

u2 t 2- (3)

-7-



Here p is the gas density, p the pressure, I the heat function,,

the..oa"ha fntov the velocity component normal to the*

shock,' 'tthe velocity component parallel .to 'the., shook.-.. this component

does''o experience a d is continuity,.:. v v-- +2 -t2

-InýFigure 1 the abscissa ai ~d~~wto h

velocit'y a..head of the shock,, OD isý.thevairdction.>f 66ikhelocity past-~

the..-shdck,--*OB is the discontinuity* line, s. -fi's e Mach'line of the

flow ahead"of the shock, OA is the.,-Mddhtline *o heflow past the shock, .

0 O.Ai.sithe-angle between velocities, a'--.and 2a ar~e.:the.,ýMach. angles, and

Pis*;the angle between the shock and -h'diecin f the velocity past_';.',',

-the~shock.

,we .!snall consider the flow of ab- pefexT66t gas (which does not limit

* the generality of the results obtained".):- .'anid then 'i = 'y(.y - M /)
* hr>is the ratio of the specifi heat- atL constant pressure to the

*h r e ' i i.. 4

* 0specific heat at constant volume.

* .- W'introduce also the "critical- ieiocity c*, namely the str'ea~m

velocity equal to the local velocity of-sound

S~ 2(7-1
7+4 L.

*The local velocity of sound c, defined by the relation a2  dp/(dp), Is

0(5)

(for c =v, v =c*).

It is seen from -(5) that the velocity of a supersonic stream can-

not exceed vma = 4/ (l)(l)C*.

Let us show that if the velocity past the shook eoxees the velo-

city of sound, then the discontinuity line is always situated between

the Mach lines for the flows ahead'of and behind the shock, and the

discontinuity line makes a larger angle to the x axis than the Mach

- 8-



line for the flow ahead of the shock, i.e.

. - Eliminating p.and p from (1),(2), (3) and

using the. relation (4), we obtain

- 4 7+
• • . ,. *-~

F It is obvious that if vn >ct, then vn <ctl
Fig. 1 n 1 t

* and vice versa. From (1) It follows that for a shock we have vnI>Vn2

and consequently vn >ct. Let us set up the difference c - v . Since

in accordance with (5) and (7)

-' +1

we get

C"_ I _ ' -vs.= 2 ,- 8 - (8)

If vn >ct, then vn >cI.

An analogous relation occurs also for the flow past the shock:

* c: - , ='2 (C;' -V,) (8')
0 *

Since Vn 2< ct, we get vn 2< c2.

Therefore, the normal component of the velocity ahead of the shock

* lways exceeds the velocity of sound, while the normal component of the

velocity past the shock is always less than the velocity of sound.

From Figure 1 we get

On the other hand, the angles between the Mach lines and the correspond-

Ing velocity directions (the Mach ang:les) are

"-9-



Since c2 > Vn we get a2 >, and since c1 < vn n we get B >aL-4,

q.e.d.

0 By transforming the relations (1) - (3) we can find a connection

between the velocity components v2x and v2y past the shock for given

volumes of v1 and c*:

00 Pw =(PI - V*0g)(N -

2 aT- ' -%. eo(9)

This curve has the form shown in Figure 2. The point A corresponds to

the straight shock at which v2y = 0, and v2x = c* 2/(Vl), where the

point B corresponds to the absence of a shock (v2y = 0, v2x = vl). The

intersection of the line drawn from the origin at angle * with the

curve (9) makes it possible to determine the velocity occurring past

the shock. We see that for a given angle of turn # three values of

the velocity are possible. One of them, F'', corresponds to a velocity

past the shock exceeding the velocity ahead of the shock, that is, as

follows from equation (1), it leads to a rarefaction shock. According

to Zemplen's theorem, such shocks cannot be realized, so that the en-

tire branch of the curve to the right of the point B has no physical

meaning. The two other values of the velocity (F and F') are in princi-

ple equally valid. The point F' corresponds to the larger velocity past

the shock, and F to the smaller velocity. The discontinuity line will

make a smaller angle with the abscissa axis if the flow past the shock

has the larger velocity. Indeed, let us write down the condition that

the velocity component parallel to the direction of the shock remain

continuous (Fig. 1):



+ vs. Cos + -P) +

Hence,

or
/ (('o)

/ 0 (+ v (10)

For specified v1 and 0 the angle • + *

Fig. 2 will be the smaller, the larger the value of

vp. * If the angle of turn * exceeds the

limiting angle Omax, then a turn through a larger angle becomes impos-

sible. This limiting angle is attained when the line drawn from the

origin is tangent to the curve (the point S). Since the point B corres-

ponds to supersonic velocity (vI > c*), and the point A corresponds to

subsonic velocity (c* 2/(vl) < c*), it is obvious that there is a point

on the curve (9) corresponding to the velocity of sound past the shock.

This point (D) is the point of intersection of the curve (9) with the

circle v2 + v2 = c* 2 . To the right of point D we have supersonic modes

of flow past the jump, while to the left we have subsonic modes. Let us

show that of the two possible values of the velocity past the shock

(F and F'), not more than one corresponds to supersonic velocity and

consequently at least one must be subsonic.

For this purpose it is sufficient to show that the point S always

lies in the subsonic region.

Let us find the coordinate vxs of the point S. The point S is the

intersection of the curve defined by equation (9) with the line

wh,,A

11



From this we have for the point S:

(dI,,WO = (12) I)

Using equation (9), we determine d in Vys/(dVxs):
!i,, 1 1 .1

- +2 * .-t., 2 + (13)* •'S. - • .-- -', - -s

on the other hand
' a I' IIP ( 1 3 )

Equating (13) and (13') we obtain after simple transformations the

quadratic equation

A =I/ •_ ,+ 4-)
2-*,. ( #1 - .-I' 2 '1(14)
--- 4-F iv, + '

-- (V 1

The point D corresponding to the velocity of sound is the point of in-

tersection of the curve (9) with the circle v2  + V .c*2 . The coor-
2x 2y

dinate Vxd is determined from the equation

"+ - (15)4_-" + "_,d
T + ! V 1

Transforming this equation, we obtain again a quadratic equation

hId - A'vj + B' = O,

A'_+ (3c.' + &ý,
27v, 2- cV(16)

B ' -- I - 2 , ,';,+3 _

Equation (14) has two solutions. One corresponds to the point S'

where the line (11) is tangent to the curve (9). We denote it by vS

The second solution (v (2)) corresponds to the point where the line (11)

- 12 -



a (2)

of the quantity (v~ -v~)
2. It is easy to show that the point D corres-

ponds to the larger of the roots v (2)
Vxd

Using the properties of quadratic equations, we write the obvious

equations:

,r,( '-,,-4-i(.]•-r = A- A'-- (17)

-'i 'd -d " B .. (18)

where c1 is the velocity of sound in front of the compression shock

[see (5)).

We recall that v(2) xd < v < V On the other hand,
x d 1l x d < < V1 . n t e o t e a d

" (2)> vl. Thus, we always have v(2) > Vx(d) The velocity v of a super-VXS 1()

sonic stream can, as is well known, not exceed Vmax = Y + l/(y- 1) c*.

For this valuc vI we get c1 = 0. From (18) we obtain for this case

'sV I' Ifl

'SI, " 1

s(2) > V(l), we also get v(2)> Vx

We have shown that for the maximum value vI (for specified c*)

the point S is located in the region of subsonic velocities. Let us

show now that this property is maintained for all supersonic values of

the velocity v1 of the incoming stream. Let us assume that there exist
"-(2) (i Thnbyvruofteac

such values v1 > c*, for which v() < V . hen, by virtue of the fact

that vxd and vxS are continuous functions of vl, there should exist such
a ma 1> *) t whch () _(2)

avalue of v > aS w h v(v) .= Equations (17) anda aleofv(Vmax > vI * a hc Vxs =xd.
0

(18) will be written for this value of v1 in the following fashion:

- 13 -



4

(2) 2Hence v c*/(v). But it follows from (9) that the coordinate

vof the point with abscissa c*2 /(vl) is equal to zero. Thus, V(2) isvy 1f the pxd

equal to the total stream velocity past the compression shock and is at

the same time smaller than c*, since vI > c*. This contradicts the con-
dition that the point v (2) should correspond to the velocity of sound.

xd
We have reached a conclusion that over the entire interval of

variation of v, (from c* to vmax) we have V < v and thus the

point S is always in the subsonic region.

If the angle of the turn in the velocity is 0 < 0l, where s is

the angle between the x axis and the line passing through the origin

and through the point D, then one of the possible velocities past the

discontinuity is supersonic, and the other is subsonic. If 0 > 01, then

both possible values of the velocity lie in the subsonic region.

§3. FLOW OF SUPERSONIC STREAM PAST A WEDGE

Let us consider the flow past an unbounded wedge with an aperture

angle 20, produced by a supersonic stream with velocity v1 and critical

velocity c*. If the angle 0 does not exceed the limiting value 0max,

which is a function of v1 and c*, then flow modes are possible, in

which a shock wave initiates at the point of the wedge. Then, as fol-

lows from the foregoing section, two flow modes are possible in princi-

ple, one corresponding to a larger velocity behind the shook and the

other corresponding to a smaller velocity. The angle between the dis-

continuity line and the surface of the wedge will in the former case

(•) be smaller than in the latter case (P') (Fig. 3). Thus, in the case

- 14 -



of an infinite wedge we have two equally valid

Ssolutions, and we do not know how to choose be.
i tween them.

Landau has shown [3) that any plane shock is

stable relative to small perturbations, and that

the singularity of the problem considered here

Fig. 3 lies only in the fact that the discontinuity has

a kink (a sharp point). This case calls for an additional investigation

from the point of view of stability. However, such an investigation does

not seem to us to be fruitful. Indeed, were such an investigation to

yield new results and were it to lead to the stability of one of the

solutions, the solution more likely to be proved unstable is the one

with the large kink in the shock, that is, with the larger velocity

past the discontinuity. At large velocities of the incoming stream and

at very small angles t, an oblique shock corresponding to a smaller

velocity past the discontinuity is quite close to a straight shock and

therefore has no kink whatever, whereas an oblique shock corresponding

to the larger velocity has a considerable kink past the discontinuity.

Yet experience shows that in the flow past a body, even at a small an-

gle 0, the solution realized corresponds to the larger velocity past

the discontinuity.

The problem of flow past an unbounded wedge is a mathematical ab-

straction, the validity of which is not obvious beforehand. The physi-

cal formulation of the problem calls for flow around a finite body. We

should therefore not be surprised at the duality of the solution for

a case which is physically not realizable. We shall show that in the

case of a finite body the two solutions are no longer equally valid.

Let us consider by way of an exampl4 the flow around a sharpened

body with the contour as shown in Fig. 4. As will be shown below, the

- 15 -



choice of the specific form of the con-

C. *tour does not limit the generality of the

c' / conclusions. I
% ~Let us, assume that when a supersonic

'A-stream flows past the body under consider-

X: • ation a compression shock starts on the

L: point of the wedge, and that behind the

shock the velocity remains supersonic

Fig. 4 (this is possible if 4 < #i), that is,

the solution corresponding to theelarger

velocity behind the discontinuity is realized.

Were the shock to extend to infinity without attenuating an inten-

sity, then the resistance experienced by the body would be infinitely

large (Fig. 4).

Actually, the entropy of the gas masses flowing around the body

increases in the shock. As was shown by the author's paper [4], the

resistance of the body is proportional to the expression /ASdy, where

AS is the change in the entropy per unit length. Since AS is in our

case a constant finite quantity, for an unbounded discontinuity the ex-

pression given above, and with it the resistance, become infinitely

large. This does not occur, since perturbations that lead to the atten-

uation of the shock originate at the point A.

Because the velocity of the flow around the angle OAD exceeds the

velocity of sound, the perturbations originating at the point A propa-

gate along the Mach line. The solution corresponding to a plane oblique

shook will be valid only to the point C, where the shock crosses the

first Mach line (so-called weak discontinuity), making an angle a2 with

the direction OA. This crossing must occur, for ir. Lccerdance w:!th the

proof given in the preceding section (A2 > p3. ,. round the "
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OAD, the stream expands, and, in accordance with the property of super-

sonic flows, the velocity will increase. Consequently the velocity of
•o the stream in the region ACC' will exceed that in the region OCA,, and

therefore the discontinuity line should bend accordingly. It is obvious

that the angle betweeen the discontinuity line and the x axis should

decrease and approach the Mach angle of the flow ahead of the shock,

since the difference between the velocities ahead of and behind the

shock decreases. In the region AC'C" the velocity increases even more

and the intensity of the shock becomes even less. At sufficiently large

distances from the body, the intensity of the shock becomes as small as

desired, and the discontinuity line merges with the Mach line. The ex-

pression lady is in this case finite, as is also the resistance of the

body. The calculation (which can be carried out only if the angle 0 is

small and the velocity of the incoming stream close to the velocity of

sound) shows that the resistance calculated with the expression tASdy

coincides exactly with the resistance calculated directly from the dis-

tribution of the pressure along OA and 0A' (see (4]).

Let us assume now that a compression shock starts from the point

of the wedge, and behind it the velocity becomes subsonic. In the case

of subsonic flow past the angle OAD, the perturbation starting from the

point A propagates in all of space and therefore the discontinuity line

begins to bend immediately, starting from the vertex. Since the sub-

sonic stream.past the angle OAD expands, the perturbation starting from

A leads to a decrease in the velocity, and the intensity of the shock

should increase, while the discontinuity line should bend in such a way

as to approach the y axis. Thus, in this case we shall have no section

whatever in which the shock would be linear.

(From the foregoing qualitative analysis we should expect that

in the flow past a pointed body the compression shock can be tangent to
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the vertex only if the velocity behind the shock exceeds the velooity

of sound. If the angle $ > $1, then, as shown in the preoedtig section,

only one solution is supersonic and the problem is solved uniquely. If

* > sl, both solutions correspond to subsonic velocities and the shook

cannot start from the vertex of the body. In this case the shook "Jumps

away" from the body, so that the real limiting angle at which the oo-

ourrence of discontinuity starting from the vertex is still possible

is not 0max but 1.] *

The criterion obtained by Levinson [2] on the basis of an incorrect

theory. differs greatly from ours. In place of the condition v 2 > 02

(or v2 > c*) Levinson obtained a condition according to which the tan-

gential velocity component is vt > c1 . As can be seen from Fig. 11 of

Levinson's paper, this condition differs from ours at all values of the

velocities of the incoming stream.

In conclusion we point out that the criterion proposed is not at

all universal for the flow around an arbitrary body. We recall that in

flow past a rounded body there is produced a discontinuity line, the

velocity behind which runs successively through all possible values

from c* 2/(vl), corresponding to the point A on (curve 9) (see Fig. 2),

to vl, corresponding to the point B.
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From the editor: The paragraph enclosed in square brackets is in-

eluded in the manuscript, but a note on its margin indicates that S.Z.

Belen'kiy subsequently started to doubt the correctness of this conclu-

sion. However inazmuch as the general conclusion that the two solutions

are not equally valid in the case of a finite wedge is regarded at the

present t--------------*--------fs e S.. t h'.e publi-

cation of this article is fully Justified.
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11 It is easy to see that the direction of the oblique shock
to perpendicular to the line FIB which Joins the velocity
vectors before and after the shock, that is,
ctg (CBF') - v y/(v1 - vix). It is evident therefore that

for a given v1 the direction of the shock varies continuous-

ly and monotonically along curve (9) from ir/2 to 01.

14 To check the considerations advanced here, it would be desir-
able to carry out experiments with flow around a wedge at an
angle * larger than 0 but smaller than #max-
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S

HYDRODYNAMIC EQUATIONS WINH
ACCOUNT OF RADIATION

S.Z. Belen'kiy

To solve many physical problems, particularly in astrophysics,

it becomes necessary to take radiation into account in the hydro-

dynamic equations. In spite of the fact that the material equations

of motion with aucount of radiation were derived many times, the ques-

tion has not yet been fully clarified. In the present article we derive

the fundamental equations in two different ways, and also discuss work

by other authors.

1. We start from the laws of conservation of matter, momentum,

and energy.

Let
/(v. r) dVdO (1)

be the number of particles in a three-dimensional volume dO - dxdydz
with velocities in the interval at(Vx V y,vz, vx + dvx, vy + dVy. vz +

+ dv z). Let, further,

N(,. r, ,v)dvwddO (2)

be the number of photons in the three-dimensional volume dO within the

solid angle d" and with energy lying in the interval hv, h(v + dv),

where v is the radiation frequency and h is Planck's constant; the di-

reotion of propagation is characterized by a unit vector n. The cosines

of the angles between the vector n and the coordinate axis are denoted

by ai. The index i runs through three values corresponding to the angles

with the x, y, and z axes.
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We consider the change in an arbitrary component of the momentum:

.- P +P dO (3)

Here P veahch is the density of the material component of the momcntum

equal to
Pi.Bel =,,,A (v. r) vjdV,()

where m is the mass of the particle. Were the particles of the mater-

lal to be at rest in the reference frame considered, we would have

Pi.veshch = 0. Actually, however, the particles move with macroscopic

velocity 7. Thus, '- + where vj is the microscopic particle

velocity. Consequently,

P,=m1 VIf/(, r)dV+mfv/ C(, r)dV. (5)

But the quantity

,,i 'l 'V, r)aý=?

is none other than the density of the material, and

jv*: (v,, r) dY =

The density of the radiation momentum component is

since hv/c is the momentum carried by the photon in a direction char-

acterized by the vector n. The change in momentum in the volume under

consideration is determined by the momentum transferred by the particle

and by the photons through the surface surrounding the volume.

The momentum transferred by the particles is
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S

rsfi/(g. r)vi(vds)dV =
i..n ,, l• (,. r)(V,+ v)(V. + v~,dsV=,

M .•(fI , ,') (V1V1 +,;V, + v,t' +, 4 ) P V dS.dV.

SpV.Vd,, + ' i I (i,. r) ,;v;dVdS,

where dB ls the surftaoe element, the absolute value of Which in equal

to the area of the element and whose direction Is norml to the surfase.

from the macroscopic point of view, the quantitites under the surtaoe-

integral sign in the last term are the components of the pressure ten-

sor 'Pk

If we neglect viscosity, then

P' Pa(8')

where p Is the pressure of the material.

The momentum transferred by the photons In equal to

JN t&4(covISO d-4, 3 SNh/ivdudad.S (9)

The quantities

Sp,=,Jvia'e e (91)

form the tensor of radiant energy pressure.

The surface Integrals (7) and (9) can be transformed In aceord with

the Gauss theorem into volume Integrals:

fpw~rSa + padhwJ(pirl0.+ pm)dV, (10)

*-. .+p •ds.=J•(,..+dv . (1o)
pd. d V

Squating expression (3) to the sum of (10) and (11), and taking into

consideration the fact that the equality obtained must hold true for
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an arbitrary volume dO, no matter how small, we obtain the following

differential s;";atiln:

ii (.V,+ .-. 2.,(pVV,.+ ,Pao+ 6), (12)

where H is the vector of the radiant energy flux;

H, =,- h .vhadwL.

Let us change over from the derivative of the velocity at a sta-

tionary point to the Lagrangian derivative D/Dt, and let us use the

equations for the conservation of matter, which remain valid if pair

production processes are neglected. Equation (12) can then be rewritten

as:
DI" 6 P apk *IJP'7 -M), ,W .ft" " (12 ')

The last two terms are due to the radiation.

Let us proceed now to the energy conservation equation. The change

in the energy of a volume element per unit time is

i-- (I + W...) dO, (13)

where Wveshch is the energy per unit material in a unit volume and W iI

is the radiation energy per unit volume;

2 (14)w..,.=• (.J. [+),•.(•

where u is the potential energy of the particle in the field of the

other particles. If the particles of the material move with macroscopic

velocity V, then

"(v ) Tv .- + T V",v,) dV + pg,.(5

where eu is the potential energy per unit mass of the material. Since

m./(v, r)d, =p, ,(v.r) ,tvdV =0.
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we get

Wo .PI Lsi F+p (P6

(ek is the kinetic energy of the microscopic motion of a unit mans of

the material, and e is the internal energy per unit mass of the mater-

ial).

The radiation energy per unit volume is

W.a=fNhWkd. (17)

The change in the energy of the volume per unit time Is due to two

causes. First, the change of the energy is due to the flux of kinetic

and internal energy of the material through the surface surrounding the,

volume:

(1 i ,/"(v, r) m Vy~'rdr d/ (18

But

,nJI(w, r) p:v;dV =p,.

The material energy flux is

Lr( "'+ Ps) I.+ V•,,]d.,. (181)

Second, the change in energy is due to the radiant energy flux:

A' f ,Mi ;(aL4S) dvd.. (19)

Equating the sum of the integrals (18') and (19) to expression (13) and

changing over from surface integrals to volume integrals, we obtain,

by taking a sufficiently small volume, the following equation:

S' (~j'+ii+WL[Qp'+' VJ----: (20)

where H is the radiant energy flux vector. Using the equation for the

conservation of matter and equation (12), we can rewrite (20) in the
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form:

, -" Y, ,(20')

In the derivation of (12)-and (20) we calculated the quantities

determining the radiation in some "resting" coordinate frame. Yet it

is convenient in many cases to calculate the radiation in a coordinate

system that moves together with the matter. Let us assume that the velo-

city of a volume element of the matter is sm&1l compared with the velo-

city of light. On changing from the coordinate system in which the

matter moves, to a system in which it is at rest, it is necessary to

use the following formulas which take into account the Doppler effect

and aberration:

(21)

(22)

Here • - Vk/(c). The quantities designated with an asterisk refer to

the coordinate frame in which the matter is at rest.

The values of Wizi, H and P'ik in the two coordinate systems are

related by:

W - S Vkvdwd. = Nh dwdv (7) N-dwdv (I + (23)

We obtain, with accuracy to terms of order v/c,

.. , ,,. . .--- , , ~(24)
II. --- C.!.\ .'.,. ,l d. " c,,. I A .', .•, II3• d, r4c,, .i ,,d•.,

i.=c [A/1:vWdu? 4- el~ +~,:~~w -;4- I~ NJ

it: ~(25)

Finally,

,,=,,--,- + V-• (26)
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Substituting (24), (25), and (26) into equations (12) and (20),

and neglecting terms of order v/c, we obtain ultimately that in this

approximation equations (12) and (12') remain without change (if it is

recognized that we neglect the term HI/c 2 ), while equations (20) and

(20') assume the following form:

7, -(I + wP ) = - - +pg) v ,+/1+

+ vp1 + ip-, v.,aileg

, l,.. ______+__,.,, ,_ .. +,, u

r b = •t (28)

If the radiation is isotropic in the coordinate frame that moves

together with the matter, then H; 0, and pjk = p' *6k.

Equation (28) is then written as:

DI$. .',, !ý, ,, + P10 + ; _O.( 9DI•, 1)- p -i p + VaDj-
M I I Y=O. (29)

This equation expresses, as can be readily seen, the constancy of the

entropy in a moving volume of liquid in which the radiation field is

isotropic.

2. The hydrodynamic equations with account of radiation can be

derived also by starting from the energy-momentum tensor for a system

consisting of an aggregate of particles and radiation.

In a coordinate system with respect to which the given volume ele-

ment of matter is at Vest, this tensor has obviously the form:

P&.." - p,,, (30)

where, as usual, a and A run through the values -rorn 1 to 3# p is the

material pressure, and p' is the radiation pressure;

T.... .T4(30')

where H* are the components of the radiant flux vector in the coordinate
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system where the given material element is at rest;

(-)4 T;fi,,r.,.+ W:., (30")
WPeh is the density of the .energy of the material, including the

rest energy.

We now change over to a reference frame with respect to which the

given element of matter moves with macroscopic velocity v. We assume

that this velocity is directed along the x axis. The tensor Tlk is

then transformed into the tensor Tik. We confine ourselves to an ex-

amination of the one-dimensional problem, that is, we assume that

p - 0, with the exception of p* and H* - - 0.aaxx y z
In this case

-(p + i'"o)--' ,ii- (w~,n4 V~)

(IV1L . ,, .. .. A -, , , + V2:- z z,,•,) -... (a' + p'.,

(31)

TI., = TrO, "TL,= ,

the remaining components are Tik = 0.

The equations of motion for the system under consideration are

determined from the conditions 6Tik/•Xk) = 0, which in our case reduce

to the following relations:

p 2__ V, + )

(32)

" "D 0,

+/-(. ,. W.. + P+ P.))()
ii i +-(ii',+ "
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,•[w",.4 + w;M,)- 2 u + •(,
+- * k ( rx=o. (33)

Equations (32) and (33) are not complete without the condition for the

conservation of the number of particles. For the relativistic case this

equation is written as:

/ ar a ~ '
_ •), ,,,(34)

where n is the number of particles per unit volume in the rest system.

Let v << c. The energy WP can then be represented in theveshch

form of a sum of the "rest energy" of the matter and the internal energy

of the matter per unit volume:

:,,r...,= ,,0• +:•.(35)

where p - nm. Equation (32) subject to the condition v/c << 1 assumes

the form:

Changing over to the nonrelativistic form of (33), we must take

into account equation (34), which can be written, accurate to terms

quadratic in v/c, in the form:

'FVI .'!I±nt ,0. (37)
Using (37), we find that when (v/c) << 1 equation (33) assumes the fol-

lowing form:
[L, -, +,, o',,+p- +,; ÷W..,) + 11.0]+

t i. (3e)

It is easy to see that equations (36) and (38) coincide with equations
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The system of equations (12) and (20) or (12') and (20') must be

supplemented not only with the continuity equation for the matter, but

also by the transport equation for the radiation, which we shall not

stop to disouss here.

3. We compare the equations obtained by us with the equations ob-

tained by others, first of all with the equations of Milne, who pre-

pared a review of the question considered by us.

If we neglect the term H/c 2 in our equations and the gravitational

forces and internal energy sources in the Milne equations, then equa-

tion (12') coin.cies .•:th the zorrespondini equat'ion of :.:ilne.

However, the equations that express the conservation of energy will

be different.

Milne's equation in our notation has the following form:

a +•' -DA B-L-- (39)

here p' is the additional pressure due to the radiation. Let us compare

equation (39) with (20'). They coincide only if we assume that tensor

Pik has the form:
PA- ik'.P

and supplement the right half of (20') with the term

This term is analogous to the term- c(PVk)/(axk), which is contained in

(20) and has the physical meaning of the work done by the pressure

forces. However, whereas the term - a(PVk)/(6xk) follows directly from

the transformation of the material energy flux, given in expression (18),

no corresponding term arises for the radiation, as can be seen from (19).

Milne's equation is therefore incorrect.#

The equations of Jeans and Vogt for the energy has the following
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form:

", ~I X7 Z"'z --T' (40) 7 i

Milne believes that it holds true under certain boundary oondtions.

Actually, the Jeans and Vogt equation is correct, as can be readily-

verified by comparison with (28), if, first, we assume that

Pik = pP'ik' and, second, the quantities characterizing the radiation

are measured in a coordinate system with respect to which the given

material element is at rest.

The use of the energy conservation equation in the form (28) is

meaningful if the radiation field differs little from equilibrium with

matter.

In conclusion, I am grateful to Professor I.Ye. Tamm for a discus-

sion of this problem.
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PRINCIPLES OF PROTON SYNCHROTRON THEORY

M.S. Rabinovich

FOREWORD

The development of accelerator technology acquired a particularly

vigorous character after 1944, when V.I. Veksler [1-3] discovered the

phenomenon of automatic phasing of particles in resonant accelerators,

and new methods for obtaining high-energy particles were obtained on

its basis.

Even by the end of 1945 it became possible to proceed to design

and create installations, aimed at obtaining electrons and protons hav-

ing energies of several million electron volts. For such energies, the

most suitable accelerators turn out to be the synchrotron for electrons

and the synchrocyclotron for protons, deuterons, and other particles.

It is obvious that the development of accelerator technology could

advance only on the basis of well-developed theory, and indeed, in

1945 - 1947 the works of the author (4-8], S.M. Rytov (9], A.L. Burshteyn

[10, 11], A.A. Kolomenskiy (13, 141 and others laid the groundwork for

the theory of large resonant accelerators*.

In 1947, a synchrotron for 30 Mev was first started up at the

Physics Institute of the USSR Academy of Sciences (FIAN), and two years

later a synchrotron for 265 Mev (FIAN) and a synchrocyclotron for 550

Mev ** (Institute of Nuclear Physics Problems, Academy of Sciences USSR -

IYaPAN) were constructed.

For nuclear physics to progress, it'is very important to be able

to attain even larger energies. The production of protons with energy
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of 10,000 Mev would have made it possible to penetrate into the region

of perfectly new phenomena, connected with the production of nuoleo"

and heavier particles. The nuclear processes that occur at short dis-

tances attainable at such energies can change appreciably our notions

concerning the nuclear forces.

In 1948 a group of theoreticlmos it. the Physics Institute of the

Academy of Sciences was charged with the problem of creating a complete

and sufficiently exact theory that can serve as'a basis for the design

of an accelerator to produce protons with energy of 10,000 Mev (10 Bev).

At the present there exists only one type of accelerator with

which the above-mentioned energy can be attained. Such an accelerator

is the proton synchrotron with slotted magnet. The linear gaps are used

to hold inflector plates, accelerating and signal electrodes, etc.

The colossal dimensions of the installation, the presence of li-

near gaps with impossibility of making the magnet gap sufficiently

large, the injection of the particles into the accelerator chamber at

relatively high energies, the need for exact correspondence between the

values of the frequency and the magnetic field, and the influence of

different fine effects on the motion of the particles, all these and

many others have posed before the designers, particularly'before the

theoretical physicists, many new and complicated problems.

In 1948, when we embarked on the development of the theory of a

proton synchrotron with slotted magnet, only one paper devoted to fast

oscillations, that of Dennison and Berlin [32], was known. However, as

will be shown in Chapter II, even this paper was not satisfactory. We

therefore had to do the whole work from scratch.

During 1948-1950 the problem facing us was essentially completed

E16-31]; some additional questions were worked up in 1951. However,

even now practice poses before theory many new problens.
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In the development of the theoretical problems, particular atten-

tion was paid to the applied aspect of the problem. We have therefore

attempted to reduce the theory to a form that is convenient for direct

use for practical purposes. To the contrary, practice kept urging on

the theoreticians, raising new problems, making it possible to judge

the validity of various assumptions.

On the basis of theoretical and experimental work it was shown

that protons with energy of 10,000 Mev can be obtained; the basic para-

meters of the accelerator were chosen, the technical specifications for

the individual units were formulated, and sketches and technical designs

were prepared for two installations (a model for 180 Mev and an instal-

lation for 10,000 Mev).

The theory developed by the author and his co-workers served as

the guiding material in the construction of the 10,000-Mev proton syn-

chrotron. The correctness of some of the important conclusions of our

theory was confirmed with a working model of a proton synchrotron op-

erating at 180 Mev.

A description of the experiment made with this model and a compari-

son of the results with the theory was made in later papers by the

author, I.S. Danilkin, L.P. Zinov'ev. and V.A. Petukhov.

In the present monograph are gathered the works of the author for

194&8-1950, devoted to the theory of the proton synchrotron with slotted

magnet. These works, naturally, do not cover all the problems in accel-

erator theory, but it seems to us that the main and principal problems

are quite adequately represented.

Without changing the general plan of the exposition, we have made

a few small additions in the course of preparing the manuscript for

print, connected with the application of our theory to strong-focusing

accelerators, based on work performed in 1953 (151.
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The present work consists of six chapters.

In the first chapter we investigate slow, so-called radial-phase

oscillations occurring when particles move in an accelerator with a slot-

ted magnet. This chapter is a natural continuation and development of

the 'author's earlier papers [16]. Using the method developed by us (8),

we investigate the behavior of the particles on the phase plane, pay.ing

principal attention to many singularities of motion in an accelerator

with slotted magnet, which are of practical significance.

We Introduce a new stability criterion (1, 34) for the phase oscil.

lations, connected with the presence of the straight-line gaps; the

change in frequency of phase oscillations, the stability regions, the

decrease in the oscillation amplitude and other quantities are deter-

mined for an accelerator with slotted magnet. The formulas obtained by

us are of great significance for applications and for the theory of in-

jection (Chapter V) and of resonances (Chapter IV).

In this chapter we investigated also acceleration in multiple re-

sonance, that is, for an integral ratio of the frequency of the accel-

erating field to the frequency of revolution.

In the second chapter we consider fast particle oscillations. Un-

like the known paper of Dennison and Berlin [32], we present here a

correct account of the influence of the linear gaps on the injection

and the capture of the particles in the acceleration mode, we determine

the optimum angle of emission of particles from the injector, and in-

troduce the concept of the envelope of the particle trajectory, with

which it makes it possible to describe simply and illustratively the

behavior of the particles in the accelerator. The motion of the partiale

is calculated for the first time with allowance for the presence of the

magnetic field in the linear gaps.

In a real magnet there are always certain deviations of the mag.
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netic field from the calculated value, which accelerate the orbit and

consequently lead to an equivalent lose of part of the working region

of the magnet. The presence of linear gaps in the magnet not only chan-

ges the character of the influence of the distortions, but also oreates

the possibility of ooourrenoe of altogether new perturbations (for ex-

ample, saturation of the edges of the magnet sectors facing the linear

gaps).

It is clear from the foregoing that a clarification of the influ-

ences of the deviations of the magnetic field from the calculated value

is one of the most important problems in the theory. Our own investiga-

tion (17], Made in 1949 (together with A.M. Baldin and V.V. Mikhaylov),

is still the only work devoted to this problem. The results of the

third chapter, in which these calculations are presented, were already

used not only in the designs but also in the processing of the measure-

ments made on the 180-Mev proton synchrotron model and on individual

blocks of the magnet of the large accelerator.

The fourth chapter treats an important and complicated problem of

resonance phenomena between fast and slow oscillations. The resonance

phenomena in accelerators with slotted magnets differ essentially from

resonance phenomena in circular accelerators. This difference manifests

itself, first, in the displacement of the resonant values of the char-

acteristics of the magnetic field and, second, in the manifestation of

multiple resonances. We have developed a special procedure for calcu-

lating with a high degree of accuracy the resonance phenomena in ac-

celerators with slotted magnets. In spite of the complexity of the cal-

culation, the final formulas are simple and admit of a clear physical

interpretation. Along with the main calculation, we consider for the

first time in the fourth chapter fast pazticle oscillations with account

of the change of the magnetic field and the increase in the particle
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enews.

lial, we consider In the same chapter resonances between the

rh-gh-frequeney harmonics of the magnetic field and the phase ceilia-

tions. Using the method of Bogolyubov [33] and Mitropol'skiy 134]s, we

-succeeded in analyzing the resonance phenomena in the nonlinear approx-

imatiof, which radically changes the results previously obtained and Is

quite important for practice. It turns out that in resonance the oscil-

lation amplitude is limited not by "friction" and not by the speed of

passage through the resonant region, but the very nonlinearity of the

phase oscillations.

In the fifth chapter, injection theory is developed. After the doe-

tailed study of particle motion made in the first two chapters, it be-

comes possible to calculate the number of particles captured Into the

acceleration mode, and to choose the most effective and simplest me-

thod of injection. Numerous plots make it possible to estimate how the*

intensity is affected by various parameters of the accelerator and of

the proton beam, by the error in the instant when the accelerating field

is turned on, by the error in the angle of admission of the particles

into the chamber, etc.

In the sixth chapter the envelope method is used for a theoretic"l

Investigation of the free oscillations in strong-focusing aceelerators.

This method turns out to be most fruitful in the solution of problems

that arise in the design of a variety of strong-focusing accelerator

types.

In our works which was completed In March 1953, the significance

of resonances in strong-focusing accelerators was pointed out for the

first time. At the present time, there is an extensive literature de.

voted to this problem, so that we shall touch upon this question quite t)
briefly.

-36 -



Finally, in the sixth chapter we derive a phase equation for a

o strong-focusing accelerator by introducing a very convenient now quart-

. .. of*

On the whole, the sixth chapter develops the physical principles

of strong-foousing accelerators quite sufficiently for a first intro-

duction.

In conclusion, we shall stop to discuss some problems which for

various reasons could not be treated in the present work.

First among them is the entire problem of the motion of the cham-

ber from the linear accelerator-injector to the chamber of the 10 Bey

proton synchrotron, considered in the paper by A.A. Kolomenskciy; ano-

ther problem is that of extraction of the protons from the accelerator,

developed by Sabsovich, Ganzhin, and others.

Finally, we did not consider scattering and charge exchange of the

particles during the acceleration process, and also the problem of pro-

tection against radiation. All these problems are treated in a sufficient

number of papers (see (31, 35, 36]).

The main deductions of the theory are always illustrated with the

data on the 10 Bev proton synchrotron as examples, although they have a

more general significance. Some of the methods developed by us were used

to design accelerators of other types and of other dimensions, and in

particular for accelerators intended to obtain both larger and smaller

energies.

The magnet of the lO-Bev proton synchrotron consists of four sec-

tors, separated by linear gaps, each eight meters long. The average

radius of the magnet pole of the sector is 28 meters, the width of the

pole is 2 meters, the height of the magnetic gap is 40 centimeters. The

magnet section has an E-shape form. The mkximum value of the magnetic

field is 13,000 oersteds, which is reached within 3.2 seconds. At the
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start of the acceleration, the rate of build-up of the magnetic field

can change from 4,000 (normal value) to 12,000 oersteds pe: second .

(forced value). The magnetic field index lies in the greater part or

the working region between 0.55 and 0.75 (average 0.65). The injeotiom

energy is Wi - 10 Nev.

The present work could not be performed without close working con-

tact with a large group of persons from the P.N. Lebedev Physics Insti-

tute of the USSR Academy of Sciences, the Scientific Research Institute

for Electrophysical Apparatus of the Ministry of Electric Industry of

the USSR, and the Radio Laboratory of the USSR Academy of Sciences, who

participated in the design and production of the proton synchrotron of

the USSR Academy of Sciences.

I am particularly indebted to the scientific director of all the

work involved in the construction of the accelerator, V.I. Veksler, for

continuous attention.
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31 * The foreign literature of 1946-1 9 47 also contains a large
number of articles in which various problems connected with
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31 ** At the present time the proton energy attained in this
synchrocyclotron is 680 Mev.
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LIST OF SYMBOLS

We list here the most frequently employed symbols, which are corm-

mon to all the chapters of the present book. Along with them, separate

symbols are introduced in each chapter, which apply only to the parti-

cular chapter.

The formulas in each chapter are numbered independently. Reference

to formulas of other chapters is accompanied by indication of the num-

ber of the chapter. For example: (I11, 15) denotes the fifteenth formu-

la of chapter III, while (15) denotes the fifteenth formula of the same

chapter in which the reference i3 found.

A- v/c - ratio of particle velocity to the velocity of light.

o - coscv (everywhere except in the first chapter).

o - velocity of light in the first chapter.

e - particle charge.

3 - equilibrium value of the total energy of the particlb.

Ba - proper energy of the particle.

AK - deviation of particle energy from the equilibrium value.

F - l - (L/(2wR0 + L)[n + p2(1 - n)] - a coefficient.

P0 - amplitude of free oscillations.

It - magnetic field intensity vector.

Hrp HO, Hz - intensity vector components.

H - axial component of the magnetic field.
2) 0

K - 1 + n/(l - n)(1/ 2 ) - a coefficient.
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- for vertical oscillations
g -

-" -n for radial oscillations.

L - length of all linear sections.

1 - length of one linear section.

m - mass of particle.

m0 - rest mass of particle.

4g - frequency of free oscillations in the accelerator with

slotted magnet, in dimensionless units.

n - index of magnetic field (see I, 6).

v - angular dimension of magnet sector.

q -. multiplicity, ratio of frequency of accelerating field to

revolution frequency.

[1 - orbit perimeter/27r.

p - _sc/2R.

r - radius in cylindrical coordinate system.

R - radius of instantaneous orbit.

R- radius of equilibrium orbit.

p - deviation of particle radius from equilibrium value.

Pi- distance from injector to equilibrium orbit.

- maximum value of amplitude of radial-phase oscillations.

s = sin icv.

a - length of path along instantaneous orbit/R

T - period of revolution of particle.

V0 - sum of amplitudes of the voltages of the acceleratin gaps.

W1 - kinetic energy of the particle at the instant of Wnjeotiom

into the chamber.

* - phase of particle relati'e to the phase of the accelerating

electric fields; * - 0 corresponds to maximum voltage on the
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accelerating gap at the instant of passage of the partLjo,.

0 0- phasing point (I, 21).

I - minimum value of the phase in the oscillations.

2 - maximum value of the phase in the oscillations.

* . d*/(dt) - phase veloelty.

w - frequency of revolution of the particle in the magnetic

field'H.

w0- frequency of accelerating field.

S- frequency of phase oscillations.

z - distance from particle to the central plane.

p for radial oscillations.
X - z for vertical oscillations.
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Chapter 1

RADIAL-PHASE MOTION OF PARTICLES

Sl. INTRODUCTION

Motion of particles in an accelerator with slots differs essen-

tially from the motion is a circular accelerator. In both cases, how-

ever, it can be broken up into three component motions.

A. Motion with resonant frequency along an orbit, with very slowly

varying or even constant radius. This form of motion will be called

motion along an equilibrium orbit.

B. Slow oscillations about the equilibrium orbit, which are called

radial-phase oscillations and which are connected with the change in the

particle energy due to the passage through the accelerating gap at dif-

ferent values of the phase of the alternating accelerating field. By

way of an example we can point out that in the apparatus designed for

the production of 10-Bev protons, the period of the phase oscillations

ranges from 520 to 1450 microseconds. Inasmuch as the period of the

phase oscillations is approximately 100 to 2,000 times larger than the

period of revolution, the particle goes through many revolutions before

the radius of the equilibrium orbit changes appreciably. Consequently

the orbit of the particles that execute slow radial-phase oscillations

Is almost closed. This quasi-closed orbit will be called the instantan•-

eous orbit.

C. Fast oscillations about the instantaneous orbit. These oscilla-

tions are also called free oscillations, since they are not connected,

in first approximation, with the fluctuations of the particle energy as
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the particle is accelerated. The period of the fast oscillations is

usually on the order of the particle revolution. (In weak-focusing

installations it is somewhat larger, and in strong-focusing installa-

tions it is 5-15 times smaller). Along withradial free oscillations,

there exist vertical oscillations about the central plans of the magnet

(the symmetry plane of the magnet). This is the only form of oscilla-

tions in the vertical direction.

Thus, :he ;i:zure of the motion in the pro:on sy.nchrotron is as

follows: the instantaneous orbit (which is almost circular) executes

slow oscillations (pulsates) about the equilibrium orbit. During the

time of each oscillation, the particle has time to make many revolutions

(from 100 to 2,000, depending on the particle energy). Fast free oscil-

lations are produced about the instantaneous orbit, with a period that

is 1.5 or 2 times larger than the period of revolution (the period of

revolution is 7.5 microseconds at 4 Mev and 0.7 microseconds at 10 Bev).

Superimposed on the above-described motion in the central plane are

also vertical oscillations, with a period which likewise differs insig-

nificantly from the period of revolution.

The resolution of a single motion into components is, of course,

arbitrary, but it contains no inaccuracies or arbitrary assumptions.

Our main statement is that these three types of motion can be regarded

independently. Important exceptions are resonance phenomena and tran-

sients. These, however, will be considered separately. The connection

between the free and phase oscillations manifests itself, in particu-

lar, in the so-called gap oscillations. The latter are due to the in-

termittent character of the manner by which the particle acquires

energy. The basis for the possibility of considering these motions In-

dependently in the majority of cases is the large difference in the

frequencies of the fundamental quantities that characterize the differ-
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ent types of motion. A rigorous proof for this statement was derived

by the author for circular accelerators (6, 8]. A similar proof was

obtained in a differentemanner by S.M. Rytov [9]. The only one to touch

upon this question in the foreign literature is Frank (37], who, how-

ever, made an error which was discussed in [8].

For accelerators with slots, the proof of this theorem is quite

cumbersome, but it was made by A.A. Kolomenskiy (24] by the method of

finite differences. A simpler proof can also be obtained, valid for

small linear gaps (expansion parameter L/2i1R, where L is the total

length of all the linear gaps).

We can thus investigate henceforth each type of motion independent-

ly, making use of the calculations given above, and of the physical ob-

viousness of the statement given above.

We shall henceforth use always, for each magnet sector, a cylin-

drical coordinate system with the plane z - 0 coinciding with the cen-

tral plane of the magnet.

S2. EQUILIBRIUM ORBIT

By definition, the frequency of a revolution of a particle along

an equilibrium orbit is equal to the frequency of the accelerating elec-

tric field wO(t). It is obvious that the radius R0 of the equilibrium

orbit is determined from the following conditions:

'R2r6 .V E

where P - v/c, E0 - 938.1 Mev is the proton's proper energy, L in the

total length of all the linear gaps, and H (Ro, t) is the vertical com-

ponent of the magnetic field in the central plane at the radius Roo

Eliminating E from the three equations, we obtain R0 as a function

of H (RO, t) and wo(t), that is, in final analysis, as a function of

the time t. Combining the relation between H and t0 we can make the
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radius R of the equilibrium orbit vary in accordance with any pre-

scribed law, and in particular, stay constant. Obviously, the latterU
case is the most typical for the proton synchrotron. Indeed, during the

time of acceleration it is essential that the radius of the equilibrium

orbit remain oonstant, in order that the dimensions of the apparatus be

minimal, but it may turn out to be convenient during the time of injec-

tion to either increase or decrease the radius of the orbits.

Eliminating the energy E from equation (1) we obtain the connection

between the frequency c 0 (t) of the accelerating field and the magnetic

field Ho(RO, t), guaranteeing acceleration on an equilibrium orbit with

radius RO0

I: ' ,(2)

Regarding R0 in equation (2) either as constant or as dependent on

the time, we obtain every time the required law relating the change In

the frequency with the change in the magnetic field. To the contrary,

knowing the dependence of the magnetic field and of the frequency of

the accelerating field on the time, we can determine the time dependence

of the radius RO.

Let ZO(t) be such a law for the variation of the frequency as to

make R0 -. 0 = const,

•.•:-r , v,:', -•,'W )'(3)

Fig. 1 shows the dependence of the frequency f - /(M7) on the

value of the magnetic field for a lO-Bev proton accelerator.

Let the true frequency of the accelerating field co(t) differ from

the value required in accordance with (3)

(4)
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Thenthe radius of the equilibrium orbit will likewise not be equal to
N.

• .no R , Jt + •Alt.
(5)

The connection between DO(t) and AR0 is determined, acourate to

the first powers of &D/(No) and & (RO) from equation (3), in which

we substitute relations (5) and (4):

it. 0 P(6)
LF= t- lct--iI 'l-•l

-~~L (2in .LI+ p(I a')!

where.n - l in H/(3 ln R) is the index of the magnetic field.

In the nonrelativistic case formula (6) simplifies to
77 -- *. 1'e 1 (2.R0+L)A" (7)

The coefficient F is equal to unity if

dN.'# 1 L 0 0. In this case formulas (6) and (7) go

* Iover into the ordinary formula for a circu-

lar proton synchrotron. Since F < 1, it

follows therefore that in a magnet with

slots the radius of the equilibrium orbit

is more sensitive to frequency deviations

than is the case in circular accelerators.

4/1 For example, a frequency error &W/(G0) -

# Ai 2 + 0.2% leads in the lO-Bev proton synchro-

Fig. 1. Dependence of tron to a displacement of + 11. 2 centimeters
the frequency f' of the in the radius of the orbit, that is, de-
accelerating field on
the value of the magne-
tio field intensity H. oreabes the employed working region by 22.5
The circles designate centimeters (in a circular accelerator - by
the values of the ini-
tial frequency at two 16.8 centimeters).
injection energies 4
Mey (H = 103 gau)
and 10 eov v(H .• 16
gausz). 1)r, me,.a-
cyclez; 2) H, t;auso. - 46 -



S3. DERIVATION OF PHASE EQUATION

We shall call an "ideal acce-

Slerator with slots" an accelerator

in which the magnetic field in the
-linear sections is exactly equal to

zero, while in the sectors it cor-

responds to the field in a circular

6 ' •magnet with average radius R0 (pig.

2a). Such an idealization approxi-

Jcx/ 4*e 4 mates quite accurately the true mag-

netic field in accelerators in which

Fig. 2a. Diagram of accelerator. the ratio of the height of the air
1) Linear section; 2) sector; 3)
equilibrium orbit; 4) instantan- gap Dh in the circular sectors to
eous orbit; 5) magnet air gap;
6) section A-B. the length of the straight-line sec-

tions 1 is sufficiently small. In the l0-Bev proton synchrotron the ratio

is Dh/1 = 0.0375. For comparison we can state that in a 180-Mev proton

synchrotron (the model of the accelerator) the ratio is Dh/ 1 - 0.179,

that is, almost 5 times larger. Consequently in the model the magnetic

field in the linear section plays a major role, but in the proton synch-

rotron for 10 Bev it plays an insignificant role. Consequently, it is

meaningful to consider the motion in "ideal accelerator with slots" and

only then take into account the influence of the magnetic field in the

linear portions.

The phase equation can be derived by various means (see, for exam-

ple, [18]. We choose a method which shows quite clearly all the assump-

tions and disregarded factors usually tacitly introduced in the deriva-

tion of the phase equation.

It might seem natural to consider thd motion of particles in an

accelerator with slots in a special coordinate system, shown in Pig. 2b.

- 47 -



The angle y is measured along the oval trajectories, with

8. . .(8))

where s is the length along the oval trajectory, reckoned from the

chosen axis. Such a system, however, is not orthogonal, is convenient

for the analysis of free oscillations but is not convenient for the

analysis of radial-phase oscillations. At the same time, the introduc-

tion of the angle -y is a very useful device, facilitating the oalou-

lations. It is convenient, for example, to expand the accelerating

V•" ..1'/ 7,?

""Jl" Mz"

Fig. 2b. Coordinate system after
formula (8).

electric field c in waves traveling in the direction of the angle Vt

"" "" "oos•1o,(),, (9)

where 6(T) is a periodic delta-function, period 2i1; V0 is the amplLtude

of the potential difference on the accelerating gap

L perinieter of orbit (10)
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We assume that we have two accelerating gaps at y - 0 and V -

the accelerating field of which is in phase. as a periodic

function, we expand it in a Fourier series and obtain:

.... ,is,,,dl - (2k- I) .) ( i)
n ,

Let us write down the equation of motion for the circular sectors.

We know (see, for example, [8]) that in this case the equations assume

the following simple form:

•,-(m±) = rd,,r , - 1
W"); - r()= (, ) (13)d -- ,,I)= .r'],

where

For the linear sections, obviously, equation

d d 0dW1,nt =,,+) e. 0(,,d)= , (13)

where a is the length reckoned along the trajectory, Fig. 2b.

Thus, in the linear section r and s are the ordinary Cartesian

rectangular coordinates.

As the zero approximation we choose motion along an orbit with

radius RO, shown in Fig. 2b (heavy line).

The frequency of revolution on the equilibrium orbit is c0" while

the speed is v 0 = ooRono.

We make use of the smallest of the quantities

6
O V *(114a)

and carry out the calculations accurate to their first powers. The
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largest among these three quantities is the last. We introduce the

following notation:

-2= +=-.' (14b)
6 II-I X.%; K1 .. Ito

The subscript 0 denotes all the quantities pertaining to the equi-

librium orbit. The phase velocity ; shows the deviation of the revolu-

tion frequency of the particle along the oval trajectories from the

equilibrium frequency )0.

It is clear from (8) and (14) that the angle y is related with the

phase $ in the following fashion:

~ji(,- -)" :J •-• (15)

We substitute relations (14) into equations (12) and (13) and ex-

pand each of the terms contained in it in powers of p/(RO) and ý/(qO),

for example

'II (r, I) = 41iI (J./, I)-!-.,Ifo' - 1P •,

/' • •l.(16)

11i, -s -lo etc.

In the first order we obtain the following equations, which are simul-

taneously written out for the circular sector and the linear sections

(R0 - const):

× • .o L-- -.. 0-- k- (;)•,
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K'* I + " ' (17, cont'd)

where g(y) is equal to unity in the circular sector and to zero in the

linear sections. The function g(y) for sectors can be represented in

the form of the following series:

(T)--T/-- i.t1 .Cos 41 J-,
2-- ,(18)

7 | Sil •"COSi•*i'-- •.. 1li1c I -i LT cos 12 +.

We proceed to derive the phase equation. As was shown in [S, 24],

of all the sum contained to the right in the first equation of (17),

the term playing the principal role is the one with k = 1, since all

other terms oscillate rapidly and yield zero upon averaging. A rigorous

mathematical proof of the validity of the averaging method can be found

in the work of N.N. Bogolyubov (33]. The component of the wave k = 1

propagates with a velocity equal to or close to the velocity of motion

of the particles, and exerts a constant action on the particle. All re-

maining oscillating terms merely perturb the motion of the particles

insignificantly.

We first neglect all the terms of the series in the first equation

of (17), except one. Mathematically this means that we "spread out" the

action of the two accelerating gaps over the entire oval orbit. In the

same approximation, we can confine ourselves to only the zero term of

the entire series in (18). This means that the action of the vortical

electric field, which occurs in the circular sectors, is also "spread

out" over the entire oval orbit.

Finally, inasmuch as the variation of the phase $ is quite slow
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compared with the revolution frequency, "without inertia," we can ne-

gleot in (16) the inertia force d/(dt)(m).

In this case we obtain from the second equation of (17)

It=o - ,,•(-'•: T-• (19)

Substituting (19) into the first equation of (17), we obtain the

principal phase equation:

d t H~ jN A',,t~~ j( hf~.- -(2)

The left part of the phase equation (20) differs from the corres-

ponding equation for the circular accelerator in the presence of the

coefficient F [see (6)].

Let us determine the phase value 0 = 00 for equilibrium motion.

Since equilibrium motion is realized (by definition) with a resonant

frequency p0, the dO/(dt) vanishes identically and

COS (21)

Thus, equilibrium motion can occur only for particles which have

completely defined values of the .phase (±00). In other words, the equi-

librium particles occupy completely defined places on the orbit.

The phase $0 has a remarkable and unique property: only this phase

can, under certain definite conditions, remain constant all the time.

For other phases, no such conditions exist. The quantity eVo/(2) cos n0

is equal to the energy acquired by the equilibrium particle from the

electric field during one passage through the accelerating gap. For all

other particles, eVO/(2) cos *0 (as will be shown below) is the energy

acquired during one passage through the accelerating gap, averaged over

the period of the phase oscillations. Of the two phase values + 40' only

one is stable (in the cases of practical interest the phase +00 is

stable). Owing to the singular properties indicated above, the phase
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t0 is also called the "phasing point."

Expression (21) can be converted to a more convenient fornm. With

the aid of the relation

c= ell. (22)

we readily obtain:*

C..1:,-, Cos:,,, 01-.) (2-3)

where

A (24)

If A - 1, then cos B = 0. This means that in this case the aver-

age energy obtained by the protons from the electric field is equal to

zero. The acceleration is only at the expense of the vortical electric

field. By the same token we prove simultaneously that the condition

-•--(f ")=(25)

is indeed the condition for realization of betatron acceleration in an

ideal accelerator with slots, and replaces the well-known betatron con-

dition ; 0 /(27RgO) = 1 (the 2:1 condition). The phase equation (20)

was derived by us for two accelerating gaps. It remains valid also for one

or many gapsg, if V0 is taken to mean the sum of the amplitudes of the

voltages on each of the gaps.

If we assume in equation (17) that there are no phase oscillations,

that is, if we replace cos 0 by cos 0 and neglect the intermittent

character of the increase of the particle energy, that is, if we re-

place in the first equation g(#y) by 1/n, we obtain the equations for

the fast oscillations. Indeed, in this case we obtain from the first

equation of (17):

(26)
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The integration constant is set equal to zero, for when 0 - 0 the de-

viation is p - 0. Substituting (26) in the second and third equations

of (17) we readily obtain:

dt (27)-,•,../og(7=O

The solution of equations (27) is the subject of Chapter 2. The

separation which we made between fast and slow motions is physically

obvious. In addition, a number of papers is devoted to a rigorous proof

of this fact (6, 8, 24], so that this separation cannot raise any doubts

whatever.

We note in conclusion that the phase equation for the accelerator

with slots was first derived by us in the fall of 1948 and was used in

the development of preliminary sketches and technical designs of the

proton synchrotron of the USSR Academy of Sciences and its 180-Mev

model.

S4. SOLUTION OF PHASE EQUATION IN THE FIRST APPROXIMATION

Equation (20) will be solved by the method which we developed

[6, 8] for the solution of phase equations of cyclic accelerators.

We shall pay principal attention to the singularities of the phase

equation for an accelerator with a slotted magnet as compared with the

phase equation for a circular accelerator, since the latter was inves-

tigated in detail by the author [6, 8] and by others (9, 38], and is by

now well known. In addition, in the present section we obtain several

relations which will be used in chapters 4 and 5, devoted to the theory

of resonance and injection theory.

The fundamental equation (20) can be rewritten, with the aid of

the expression (23) for cos 00, in the following simplest form:
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We recall that E, K, F, and WO(t) are specified functions of U.e

time, which are oalculated in fact from the following equations:

Ito= • : = ;•=I-.,;(,-qA"(29)
I ap

In the first approximation all the coefficients of equation (28)

can be regarded as independent of the time. In this case equation (28)

is equivalent to the equation of an ordinary pendulum with external

moment. As is known from pendulum theory, three types of motion are

possible:

1) equilibrium motion, equivalent to the equilibrium position of

the pendulum: 9 = go, ý = 0;

2) oscillatory motion about the equilibrium motion, equivalent to

oscillation of the pendulum about the equilibrium position. The phase

velocity ý is equal to zero only in the mean. The phase g varies within

certain restricted limits;

3) nonresonant motion, which deviates gradually more and more from

equilibrium. This case corresponds to rotation of the pendulum. The an-

gular velocity ý increases on the average. The phase 9 changes in one

direction.

Let us carry a quantative calculation. Integrating (28) once (after

first multiplying it by p) we get:

;, -cos ,-a-4- a, (30)

where a is the integration constant.

Let us find the range of values of the constant a, corresponding

to oscillatory motion. The expression D (q) = sin 9 - 4 cos go has a

maximum when g = + go and a minimum when 9 -o- q. A plot of the func-

tion D(g) is shown in Fig. 3. The intersection of the plot of D(@) with

the line D - - a determines the values of the phases, at which * vanishes.
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In oscillatory motion, ý should vanish many times. For this purpose the

line D - -a should cross the curve D(•) at two points. The two crossing

points merge into one at the maximum and minimum of the function D(9),v

and therefore

am.%% sinr, -ý T COS~~~

""6 1:,"? lid t'oS,

Fig. 3. Plot of the function D(9)
for coo go = 0.5.

Thus, the range of variation of the constant a in determined by

the Inequality
a I .i

(31)

As can be seen from the inequality (31), for the existence of a

certain nonvanishing region of constant a, which would eotespond to

oscillatory motion, It is necessary to have Icos g0l < 1. When

Icos T0l > 1 no phasing point go exists, and all the values of the con-

stant a lead to nonresonant motion. Indeed, in this case D(O) - sin 9 -

- T cos g0 is a monotonically decreasing function of g., and for all

values of the constant a the expression sin 9 - 9 cos g0 + a can vanish

only once. Consequently ý can likewise vanish only once, and in order

to realize oscillatory motion ý should vanish many times.

We can express the constant a in terms of the initial conditions:
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We recall that E, K, F, and co(t) are specified functions of tt'e

time, which are 2alculated in fact from the following equations:

=_ 1

In the first approximation all the coefficients of equation (28)

can be regarded as independent of the time. In this case equation (28)

is equivalent to the equation of an ordinary Vendulum with external

moment. As is known from pendulum theory, three types of motion are

possible:

1) equilibrium motion, equivalent to the equilibrium position of

the pendulum: 9 = go, ý = 0;

2) oscillatory motion about the equilibrium motion, equivalent to

oscillation of the pendulum about the equilibrium position. The phase

velocity ý is equal to zero only in the mean. The phase q varies within

certain restricted limits;

3) nonresonant motion, which deviates gradually more and more from

equilibrium. This case corresponds to rotation of the pendulum. The an-

gular velocity 9 increases on the average. The phase 9 changes in one

direction.

Let us carry a quantative calculation. Integrating (28) once (after

first multiplying it by 0) we get:

(30)

where a is the integration constant.

Let us find the range of values of the constant a, corresponding

to oscillatory motion. The expression D (9) sin qP - g cos g0 has a

maximum when g = + go and a minimum when g -- go. A plot of the func-

tion D(T) is shown in Fig. 3. The intersection of the plot of D(q) with

the line D - a determines the values of the phases, at which * vanishes.
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In oscillatory motion, j should vanish many times. For this purpose the

line D = -a should cross the curve D(M) at two points. The two crossing

points merge into one at the maximum and minimum of the function D(y),

and therefore

S "' ? 4

Fig. 3. Plot of the function D(g)
for cos go - 0.5.

Thus, the range of variation of the constant a is determined by

the inequality
Ia -o, '. ,)S,

(31)

As can be seen from the inequality (31), for the existence of a

certain nonvanishing region of constant a, which would correspond to

oscillatory motion, it is necessary to have Icos 901 < 1. When

Icos 0ol > I no phasing point go exists, and all the values of the con-

stant a lead to nonzresonant motion. Indeed, in this case D(9) = sin 9 -

- 9 cos g0 is a monotonically decreasing function of g, and for all

values of the constant a the expression sin g - q cos To + a can vanish

only once. Consequently i can likewise vanish on1) once, and in order

to realize oscillatory motion ý should vanish many' times.

We can express the constant a in terms of the initial conditions:
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the initial phase velocity T and the initial phase rnaoh" From (30)

"nach
S we get:

According to the foregoing relation, the initial conditions should

satisfy the following inequality:

i,•.2.~)' (f )- s~- •a.. + ,, ,, i, ,,- ,,,.,,(32)

Fig. 4 shows the region of initial conditions for different values

of cos To, satisfying inequality (32). If we replace the inequality

sign of (31) by an equal sign, we obtain the separatrix curve, which

separates the region of initial conditions that lead to oscillatory

motion from the region of initial conditions that lead to rotary non-

resonant motion.

We see that the separatrix encloses the maximum area when cos -0

- 0 and contracts to a point when cos 90 = 1.

Of the two singular points + go on the phase plane, one is a center

and the other is a saddle. If KF > 0, then it is obvious that the stable

phase is op = go, and the unstable one is 9 = - g0 (Fig. 5).

If KF > 0, then the character of the singular points changes. The

stable phase is 9 = -90, and the unstable phase is T = + go.

The coefficient K > 0, if n < 1, and K < 0, if n > 1. Inasmuch as

it is necessary for the stability of the fast oscillations in accelera-

tors with ordinary focusing that n be smaller than unity (see below),

the case K < 0 will be considered only in Chapter 6.

The coefficient F is a monotonic function of the energy (Fig. 5);

it has a minimum when -~ 0 and a maximum when B - 1.

,-.1 L ,(33)
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Fig. 4. Phase plane and separa-
trices for different cos ( 0 .

We see that Fax is always larger than zero. Fmin may prove to be

smaller than zero if the length of the linear sections is sufficiently

large or n is sufficiently small. In this case the stable phasing point

is - go and the unstable one + go. Of course, it is immaterial for the

operation of the accelerator which of the two points is stable. It is

sufficient that one of them be stable. However, for relativistic parti-

cles ( 1 l), F max> 0; hence if I'yllui <0, then F = Oat some instant in

acceleration to relativistic energies. At that instant there exists no

phasing point at all, and the phase pattern becomes changed. Large par-
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title losses are possible then, for the two stability regions overlap

only in part.

44 41 4 V

Fig. 5. Plot of F as a function of the energy

for different values of n.

Therefore, for an installation such as the 10 Bev proton synchro-

tron, in which the particle velocity varies over a wide range, we should

stipulate that F be larger than zero:Fmi

' or - (34)

The condition (34) must of course be satisfied with a margin,

since, as will be shown below, small values of Fmin are not desirable.

The condition (34) affords, generally speaking, a great freedom in

the choice of the length of the linear portions, but it is nevertheless

a more stringent limitation (in the region of values of n of interest

to us) than the condition which will be derived below for the stability

of the fast oscillations.

Usually a condition (34) is satisfied with a 6 to lO-fold margin.

For example, for the 10 Bev proton synchrotron, Fmin - 0.77 and oondl-

tion (34) is satisfied with a 9-fold margin.
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The occurrence of stability of the phasing point - (0 for a suf-

ficient length of the linear sections, and the rearrangement of the

phase region during the acceleration process, ýcan be illustratively

interpreted. We can state that an accelerator with slots presents a

combination of annular and linear accelerators. It is known that in

linear accelerators the stable point is - Too and in annular ones it

is 4 T.. The reason for it is that in linear accelerators the transit

time between two passages through the accelerating slot decreases with

increasing velocity, while in annular ones it increases. When the length

of the linear sections is sufficiently great, the phase properties of

the linear accelerator predominate over the phase properties of the

annular accelerator. However, when -. 1 the phase stability of the

linear accelerator disappears, that is, the transit time ceases to

depend on the energy, and therefore, no matter what the length of the

linear sections, when a - 1 the phase properties of the annular accel-

erators prevail.

.The concept of critical energy Ekr, which we were the first to

introduce, and at which the phase region changes and phase stability

is lost, has particular significance for accelerators with strong

focusing. We have subsequently also shown how to eliminate the critical

energy. In ordinary accelerators with weak focusir.g, the critical energy

is eliminated by suitable choice of the index n. Concerning strong

focusing, see Chapter 6.

Let us determine the amplitude of the phase oscillations. Let

P1 < t0 and T2 > V0 be the extreme points, between which the phase os-

cillations are carried out. At these points 4 vanishes:

- , ,(35)

We obtain the value of 92 by drawing from the following trans-
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cendental equation:

Inasmuch as sin 4- P co- 40 has a
Nil--

' " a ,minimum at the pointV *.='€, it is

i -- obvious that the smallest value of

Ithe phase is vi-V The largest

V -. - value of q2 is obtained from (36)

"•: ;-�7 7 by putting "i -
1/~~~~~~~~~ Ji VJ: y U Sa C 1  Lg 0: . (7

Thus, the greatest swing in the
Fig. 6. Ratio of maximum
region of stability with res- phase oscillations is v2 + P0*
pect to 9, for different va- max
lues of coo .0 , to the stabi- Figure 6 shows a plot of the depend-

lity region when cos 9 = 0 (%2mas
and for values of cos T, from ence of a+ 0 )/2r on cos0
0 to 1 in steps of 0.05, the obtained with the aid of numerical
values of 4p + 9/(27r) are
respeotively equial to: 1,000- calculations. The radial oscillations
0.873; 0.815; 0.768; 0.729;
0.691; 0.656; 0.622; 0.589; connected with the phase oscilla-
0.7; 0.524; 0.492; 0.459;54; 0.389; 0.352; 0.312;0.268; 0.217; 0.52; 0.3 tions (the radial-phase oscillations)

can be determined from Eqs. (19) and

(30):

1t = ,-F,'• =(Ibi, • - Q cob. 0 + a). (38)

Figures 7 and 8 show the trajectories of the radial-phase oscilla-

tions against the background of the chamber dimensions. The trajec-

tories shown can be treated (when p2 << 1) as prevailing in a coord-

inate system moving together with the equilibrium particle (of course,

free oscillations are disregarded).

The amplitude of the radio oscillations is obtained from (38), by

putting 4 - 40:
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'a,,,. -.

Pi. .Phase region at the start or ac-
'celeraltion (W. - 4 Mev) at a voltage V0
= 8 kv In variables p and 4): 1) Separa-
trix at the start or acceleration; 2)
separatrix at the end or acceleration.

Fig. 8. The same phase region as in Fig.
, but for a different injection energy
W -10MNev).

where PAdenotes the amplitude of the radial-phase oscillations. The

greatest amplitude of radial oscillations will be denoted by ý. The

value of ý is obtained from (39) by putting 9, a-(O
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_..• - ,.c .,,. (40)

Figure 9 shows the dependence

M.:.D of the relative amplitude of the

to -phase oscillations (p2- 1 )/27 on

go * the relative amplitude of the rad-

ial-phase oscillations PA/p for dif-

45 ferent values of con005

With the aid of Eqs. (16),

(19), and (30) we can find the en-

ergy scatter of the particles AB:

I ~1 424744 441 474S4 le_________ -F= .(dill re -- , f?• CO., + 4). (41)

Fig. 9. Connection between The amplitude of the energy
the amplitude of the radio-
phase oscillations PA and the fluctuations (AE)A and the largest

relative swing of the phase
oscillations (2 - T,)/2n, at amplitude bg is determined in the

different values of cos q0" same manner as used for the radial-

In motion along the separa-
trix we have PA p phase oscil~tions.

Integrating (30) once more we

obtain

fJ --- l--ld nf -ý O

The integration can be carried out in the general case only numeri-

cally. However, the expression obtained enables us to determine the

frequency wI of the phase oscillations. During one period of the phase

oscillations T1 - 2/u1 we can assume that u0, K, F, and E are con-

stant, and then
-
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Fig 10 rqec€(ncce erscn)o

t- -i

fil ine nfro n a07 5 for the upper~l2)tcone rsion o efcient; 3)- 0 kv(.

whoreFig 10< o< . Thequhaenc (ind cycldestermisecod ofal mn

tind teapitd fthe phase oscillations. 0 -1 v vria

scale) ald different values of the mgneticofield index n (from n - 0.75 for the upper

curve and n - 0.55 ror the lower one with in-
terval 0.a05). The same figure shows the con-
version coefficient for the calculation of
the frequency of the phase oscillations forother values of V0 (right-hand scale). 1) cpel
2) conversion coefficient; 3) kv.

Nhr •1 < • < 92" The phases 91 and •2 determine, as alreadyr mini.-

tioned, the amplitude of the phase oscillations.

Figure 11 shows a plot of the values of the integral contained in

(A&2). So long as 191 - 901 <« 1, the value of this integral is con-

stant. As 191 - 901 increases, the integral also begins to increase.

When •l -• "90 the integrl tends to infinity.

We introduce in place of the phase $1 the deviation CL from the

phasing point: aeax - 90 - 91. The Integral (42) can be evaluated

analytically, if we assume that «ax << 2 y0. In this case* (see Fig.
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Fig. 11. tValue of the integral1

as a function ofsev and tp2" The

value of madfor each curve is
marked by lines and arrows

( < % 62 >5

10) we have

' L ' t - - . 1.

Thus, the frequency of the phase oscillations in an accelerator

with slots differs by a factor from the frequency in an ordinary

proton synchrotron (disregarding the fact that •0is I10 times

smaller than in a circular accelerator).

The results of this section serve also to prove the correctness

of the assumptions which we have made in. the derivation of the phase

equation. Indeed, it is easy to show, for example, the correctness of
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Relations (14) when W,1  V0o' which is always the case.

15. SOIWTZUOF 01 M -U~ 5XWMN IN SUCOND AP1 ~CMATXOK

We now proceed to determine the second Opproximation, which

should take Into aoeount the influence of the changes in the ooeffi-

clents of•Rq. (20) on the change of the particle phase.
t The solution given in the preceding section is valid only when

the parameters are constant. But if the magnetic field, the frweuency,

and other parameters of the apparatus change sufficiently slowly, then

the particle motion can be described as being successive transitions

from one trajectory, obtained in the preceding section, to the next

trajectory, that is, from motion with one integration constant a and

several values of the parameters K, F, K, and t 0 , to motion with ano.

ther constant and other values of the parameters. The integration con-

stant and the parameters change here so slowly, that at each given in-

stant the motion can be described in the same manner as before. In

other words, at each given Instant we can regard the motion as occur-

ring on a definite trajectory calculated in the preceding section.

The law governing the variation of the integration co•stant or,

what is the same, the law governing the variation of the oscillation

amplitude, is determined with the aid of adiabatic invariant&. The.

adiabatic invariant of a system with one degree of freedom Is the In-

egral ipdq, taken over the entire period of oscillation. In our case

the role of . Is assumed by the phase 9, and the role of p - li as-

sumad by the quantlty # 9/W0 K F, since E/w K F pla in Zq. (20) the

role of the mass (or the moment of inertia).

The adiabatic Invariant (apart from the constants) can be writ-

ten in the following form:

% . (44)
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From this we obtain the dependence of a on the time. In the general

case the Integral (44) cannot be evaluated in terms of elementary

functions. Figure 12 shows a plot of the function

I, - _-_-

Fig. 12. Plot for the calculation of the variation of
the phase-oscillation amplitudes upon change in the
accelerator parameters. 1) Scale for a.

The use of the graph in Fig. 12 is very simple. A horizontal line

crossing any curve gives the initial values of a1 and a 2 For conven-

ience, each pair of curves pertaining to different values of cos 90

starts from different points. Therefore the values of aI and a2 (in

radians) should be reckoned for each curve from its own origin. The

ordinates of the curve yield the values of the integral *fii.
41-h'I .. i

When the parameters are changed, the product V.A7,-V (Cosb 2,; *.)

should remain unchanged. Therefore the horizontal line is displaced to

such an extent, that the indicated product remains constant. The new

points of intersection determine new values of a1 and a2. When varying
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I 05coo , it is necessary to move horizontally to a second curve, cortes-

ponding to the new value of cos %0' and the intersections again deter.

mine the new values of ai and a2.

The graph presented should be used only for sufficiently large

oscillation amplitudes. Let us assume that the oscillations occur only

in the vicinity of 0". We make a change of variable q - 40 + a and

carry out the calculation with accuracy to a2. In this case

I~(145)

In the relativistic case K, F, and w0 are constant, while the en-

ergy E is proportional to H, and therefore (when V0 - const) amx -

= (40- 41) is proportional to H-1/ 4 . In the nonrelativistic case it

is necessary to take into account the time dependences of K, wO, and

F, and the result will depend on the value of the magnetic field index

n.

Figure 13 shows the dependence of fmax/(cL~.x)nach on the particle

energy for constant values of V0 and sin T0, and for different values

of the index n. Let V0 , R0 , and 4P0 remain unchanged during the accel.

eration process. We stipulate that under these conditions amax Must

decrease all the time, that is, we require that the inequality

da/dtmax < 0 be fulfulled. This requirement is equivalent to the condi-

tion (d/dt)(K F w2/E) < 0. In carrying out the differentiation we take

account of the fact that w0 - wcP where wc - const. As a result we get

dm max ,K <0, (46)

where b2 is a positive quantity. The expression in the left half of

the inequality decreases with increasing 02. Therefore, if this In-

equality is satisfied when -. 0,'it will be satisfied for all other

values of 2. We thus obtain
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• .• "> - +3-, Y -"• (47)

The Condition (47) replaces the condition n > 2/3 which we de-

rived in 1946 [4] for a circular accelerator.

If n < nkr, then the amplitude of the phase oscillations will

first increase and then decrease. In the cases of practical interest

this increase in amplitude is small. The increase in amplitude con-

tinues up to a certain energy value Ekr* We obtain the value of Ekr

from (46) by replacing the inequality sign by an equal sign. Indeed,

the vanishing of (46) denotes the reversal of the sign of dcmax/dt:

(48

'V5

47; 2 J 1 7 o SM

Fig. 13. Dependence Fig. 14. B/('max)nach as

of amax/(cmax)nach a function of the values
on the energy for of n for the 1O-Bev pro-
the lO-Bev proton ton-synchrotron param-
synchrotron data eters (L/R = 8/7).
(l/Ro = 8/7).

It is obvious that the amplitude of the phase oscillations has a

maximum when E = Ekr. Let us calculate the ratio of the largest ampli-

tude B of the phase oscillations to the initial value:
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3 1V (49)

The ratio B/(amax)nach as a function of n is plotted in Fig. 14 for a

definite value of L/RO.

S6. PHASE EQUATION WHEN THE MAGNETIC FIELD SPILLS OVER INTO THE LINEAR
SECTIONS

The phase equation for the case when a magnetic field exists in

the linear section is derived in perfect analogy with the case of the

"ideal accelerator" (without a field in the linear section). In the

derivation it is necessary to take into account the distinguishing

features of the "nonideal accelerator" with slotted magnets. We shall

therefore start to discuss these singularities, without obtaining the

entire derivation.

Let us consider by way of an example the case of a field H, which

is constant in the gap in the x and z directions (see Fig. 15). As

will be shown in the next chapter, if a field is present in the linear

portion, the magnet sectors will subtend not an angle w/2, but 7T/2 _60s

where 60 is the angle through which the particle trajectory is turned

in the linear section. We shall measure the lengths of the linear sec-

tions from the points A and B, in which the field is only slightly

different (at the accuracy which interests, say by 1%) from the field

inside the gap.

If the particle moves not along an equilibrium orbit, but is dis-

placed as a result of the radial-phase motion, then the center of curva-

ture will shift from the point C to the point 0 and the tangent to the

particle trajectory will turn not through an angle 60, but an angle a

(F4g. 15). Considering the Triangles ACB and AOB, we can find the con-

t .,tLon between the angles a and 60:
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The length of the circular trajectory of the particle in the linear

portion is:

Consequently, the perimeterof the orbit can be written in the follow-

ing form:

-2-.1 -+- L+ - 4a. (it- p).

Putting 4--4R0 Z=L., we write for the perimeter of the orbit: 2nR + L"

Thus, the coefficient n, de-

fined by Eq. (10), assumes the fol-

lowing form:

n. = + • (50)

In analogy with the foregoing,

-,the magnetic flux 0* (R,t) through

the orbit of radius R also changes,

Ar since it is necessary to take into

account the magnetic flux in the

Fig. 15. Diagram explaining linear sections. The coefficient F
the symbols.

is likewise changed:

F*=I- 1101
l2•.-J41" -- .n ? (I - n)i a

After going through all the steps for the derivation of the phase

equation, we can show that the form of the phase equation does not

change if II, F, 0, and L are replaced by n*, F*, 0*, and L*. Indeed.

Eqs. (17) for the circular part of the magnet obviously remain the

same. Nor are the equations for the straight line portions change-
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we write for g(y) in the linear portions HI/Ho(Ro) and put 9 -- sr-

In radialacoelerators, however, the magnetic field is not con- 4
stant along the particle trajectory. But it is clear from the forego-

ing arguments that the declsive role is played by the angle of turn of

the particle trajectory in the linear section, and not the form of

Hl (x). Therefore, if H1 depends on x, then all the formulas will con-

tain the average quantity.7I=itJHi(#)ds, since this is the quantity

responsible for the turning of the particle trajectory (see Chapter 2,

§4). The law governing the variation of H1 along the Z axis has been

shown by detailed calculations to influence little the motion of the

particles under rather broad assumptions concerning the magnitude of

the change in the field.

We have assumed in the preceding calculations that the presence

of the field in the linear portions is taken into account in the con-

struction of the magnet. The sectors have been made smaller by an

angle 60, so that the equilibrium trajectory in the round sectors is

part of a circle of radius R. If the correction for the angle 60 has

not been made or has been made inaccurately, then, as shown in Chap-

ters 2 and 3, the particle trajectory becomes distorted, but its

Length remains constant, accurate to (P/R 0 ) 2 .

S7. ACCELERATION IN MULTIPLE RESONANCE

As will be shown in Chapters 4 and 5, it may be convenient to use

-.nu2tiple resonance between the revolution frequency and the accelerat-

,ag-field frequency. For example, it will be shown in Chapter 5 that

.rler certain conditions the intensity of injection increases in mul-

? , .'esonance. It is indicated in Chapter 4 that it is possible to

S; the undesirable resonance between the high frequency pertuba-
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aid of multiple resonance.

In addition, in multiple resonance the accelerating system with

two gaps and a single linear section operates more effectively.

A detailed investigation of the multiple-resonarce conditions

(for a round accelerator) was made in considerable detail in (39]. In

the present section we touch briefly only upon the general and princi-

pal problems of the multiple acceleration mode. As far as we know, our

investigations are the only theoretical work devoted to this problem.

The first actual multiple acceleration mode was realized by A.M. Pro-

khorov [40].

Let us assume that the frequency of the accelerating electric

field is _ times larger than the frequency of revolution of the equi-

librium particle:

If we have accelerating gaps in only one linear portion, then

can assume arbitrary integral values.

In what follows it would be convenient to use the following nota-

tion: 9 denotes, as before, the phase of the particle in degrees of

the high-frequency accelerating field; * is the phase in degrees of

the particle trajectory (at angles y). If q - 1, then 9 and # coin-

cide. They are obviously connected by

-L + 2-,, -'V 51
q (51)

where N is an integer smaller than _. In multiple resonance, the mo-

tion of the particle is in resonance not with the first but with the

q-th harmonic of the expansion (11) of the accelerating field in a se-

ries of traveling waves. For this purposewe must obviously satisfy

the condition 2K- 1 - q (see (11)] or K - (q + 1)/2. From this fol-
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lows, incidentally, also the condition that q must be odd in the case

of two accelerating gaps, since K Is an integer. In the derivation of

the phase equation only the relations between the frequency of the aO-

celerating field and the particle revolution frequency change. Tim,

for example, Eqs. (14) and (15) are now rewritten in the form

or q-,~-;- ~)=~;~(52)

qT - ,%'dt - *;w .dt 0 ,1 .•1 ,. ,, Iq,

Consequently, if c0 is replaced in Eqs. (17), (20), and (28) by

wo/q, and t is replaced by ý/q, we obtain the phase equation for the

case of multiple resonance. For example, in place of (28) we write

d [ rq d! 1 e'l,, o. ? - eVOcosT,,

7,- d 2• (53)

Equation (53) differs from (20) and (28) in that the first tern

on the left has a constant coefficient s.
Let us integrate (53). In analogy with the foregoing we obtain:

Comparing with (30), we see that ý/w0 decreases by a factor F. Inas-

much as Relation (19), which connects the radial deviation p with *

remains unchanged, In the case of multiple resonance (but other oondi-

tions remaining equal) the amplitude of the radio oscillations de-

creases by a factor Fq. The amplitude of the energy oscillations (6E)A

also decreases by a factor F [see Eqs. (38)-(4i), whose righttlialf

should be divided in our case by ýq].

Let us find the frequency of the phase oscillations by the method

of §4 [see ("+;:

101,, (55)

Thus, the ratio wl/w0 is • smaller than before, but wl is ob-
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( viously larger by the same amount. It is obvious that this circum-

stance can be used if a) must be changed in order to avoid some undes-

irable resonance (see Chapter 4).

The stability region can be determined from equations of the type

(32)t

ei..I (56)

We see from this equation that the stability region, plotted

in the coordinates (ý, 4), remains the same if the P scale is left un-

changed, but i is multiplied by /. In the ordinary scale, all the

dimensions in the direction of the ý axis are contracted by a factor

,/ while in the direction of the 9 axis they remain unchanged.

Fig. 16. Phase plot for cos =~ 0.6
and multiplicity q =3 against the
background of the accelerator cham-
ber. 1) Separatrix.

In place of the ý we introduce the a~cis p, using the fact that p

is proportional to ý (see (19)]. In this case (56) is rewritten in the
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- bil(

! ~(5'7)

On going over from degrees V of the high frequency field to de-

grees of the partiole trajectory, we make use of the first formula of

(51) which signifies a change in scale along the 9 axis by a factor g,

and a transfer of the origin by an amount 27rN/q. When the phase 9 va-

ries between 0 and 2v, the phase * varies between 0 and 27r/q. Inasmuch

as (57) is periodic in V with period 27r, the period in * is 2w/q. Con-

sequently, the separatrix separating the stable region (57) from the

unstable one, is contracted by a factor _ on changing from 9 in de-

grees to * in degrees, and is repeated g times in identical fashion

over the extent of the interval 0 < * < 27r, as shown in Fig. 16.,

Thus, in S-fold resonance we have q particle beams in the accel-

erator. It is easy to see that the total area q of the separatrixes,

in the case of S-fold resonance, is ql/2 smaller than the area of one

separatrix in ordinary resonance.

When the intensity is calculated in Chapter 5, it is necessary to

know the connection between the amplitudes of the phase and radial os-

cillations. #igure 9 shows the dependence of (92- ( 1 )/27 on PA/P for

q - 1, where 91 and 92 are the extreme points of the phase osoilla-

tions. When q ý 1 we are interested in the sum -. ( where *2i

and *l1 are the extreMe points of the phase oscillations in the i-th

beam. It is easy to see that as a result of (51)

%N 'Ps - - )

Thus, the plot in Fig. 9 can be used also in the present case. It must

be remembered, however, that, other conditions being equal, the maxi-

:A ..'. ,................-
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times smaller than usual.

Multiple resonance has the same effect on the magnitude of the

radial oscillations as a reduction in the amplitude of the accelerating

voltage. But a reduction in the amplitude of the accelerating voltag•e

simultaneously decreases the region of stability with respect to the

coordinate *. At the same time, the transition to multiple resonance

does not change the region of stability with respect to *. The influ-

ence of multiple resonance on the intensity will be investigated in

Chapter 5. It can be stated here that the "convenience" or "inconven-

ience" of multiple resonance depends on the dimensions of the separa-

trix and on the dimensions of the accelerating chamber. It therefore

turns out that in the 180-Mev model, where the separatrix is very

small, multiple resonance is harmful. In the l0-Bev proton synchrono-

tron, at an injection energy of 4 Mev, it is convenient to use multi-

ple resonance.. An increase in the injection energy by _ times affects

the stability region in exactly the same manner as 3 -fold resonance.

Therefore, at large injection energies (20 Mev) it is "inconvenient"

to use multiple resonance. In addition, multiple resonance can be used

for certain physical experiments, in which it is essential to obtain

short particle pulses striking a target.

[Footnotes]

Manu-
script
Page

No.

53 It is easy to show with the aid of Relation (21) that if

hý 0, then

CV'oCos+•-o+ (, - )(1- D)',I•. (23')
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614 w is calculated with accuracy to % x in Chapter 4 asee
(4, 84)].

script (List of Transliterated Sybols]

Page
NO.

57 HaS = nach a nachal'nyy - initial

69 KP - kr kritichesk¥y m critical

71 a - ef effektivnyy - effective

72 c p - sr = sredniy a average



Chapter 2

FAST OSCILLATIONS OF PARTICLES

S1. Introduction

Fast oscillations in accelerators with slotted magnets were in-

vestigated in (32, 38]. However, as will be shown below, the calcula-

tion made by Dennison, Berlin, et al did not make it possible to ao-

tually estimate how the linear portion really influenced the operation

of the accelerator. Moreover, the criterion of the influence of the

linear portion as introduced by Dennison and Berlin is the so-called

quantity r2, the ratio of the maximum to the minimum oscillation amp-

litude, which, as will be shown below, has no physical meaning. These

calculations did not make it possible to estimate the influence of the

presence of the linear sections on the particle intensity. All these

questions were completely solved again in the works of the author to-

gether with A.M. Baldin and V.V. Mikhaylov [17-19, 22] in 1949-1950.

The present chapter is devoted to the motion of particles in the

so-called theoretical magnetic field, which will be defined below.

Other important questions concerning the motion of particles, which

were not at all discussed in the literature, namely the motion of the

particles when the magnetic field deviates from theoretical and reso-

nance phenomena in the motion of the particles, will be developed in

Chapters 3 and 4. An account of the influence of the linear sections

on the intensity of the accelerated beam is also investigated in Chap-

ter 5.

In the present chapter we consider the motion in a constant mag-
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netic field; an account of the variation of the magnetic field is

given in Chapter 4 (S§2 and 3). This question is treated separately in

Chapter 4 in order to avoid repetition. In Chapter 4, in considering )

the passage through resonance, we are forced all the same to regard

the parameters of the equation (the magnetic field, the index n, and

others) as variable quantities.

§2. Calculation of Particle Trajectories in an Ideal Accelerator with

Slots

We must solve Eqs. (I, 27) which were obtained in the preceding

chapter. In the first part of our calculation we use the method pro-

posed by Dennison and Berlin (32]. Namely, we solve the equations

(I, 27) separately for the circular sectors and for the linear por-

tions, and then "Join" these solutions.

The fast motions in the circular sectors have been thoroughly in-

vestigated. The basic results are universally known. We formulate only

those premises, which will be used later on.

We write down the fast oscillations in the circular sectors in

the form
X = Asinw-÷ cogu4 (1)

where X denotes either p or z, and

K 1 n for radial oscillations and K = jfi for vertical oscilla-

tions.

The amplitudes of oscillations A and B decrease with varying mag-

netic field in proportion to H-1/2. Inasmuch as the fast oscillations

can be regarded independently of the radial-phase oscillations U,, the

principal results can be obtained by means of an analysis in a constant

magnetic field, independently of the increase in energy. We therefore

assume in the present chapter H = const.
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As in the case of slow oscillations, we consider first a motion

in an ideal accelerator with slots. In this case we can write an equa-

tion of the type (12) for each sector.

For example, for the k-th sector:

='tslt 4w)II +4 14k Coo ~'w"&* (2)

For convenience we measure the time for each sector from the instant

that the particles enter in it (therefore we use tk in place of t in

(2)).

Let us find the connection between the amplitudes (Ak, Bk and

Ak+l, Bk+l) in two neighboring sectors of the magnet. In the linear

section of an ideal accelerator with slots, there is no magnetic field.

Therefore the particle will move along a straight line. This means that

x does not change during the time of flight, and X changes by an amount

x1v, where 1 is the length of one gap and v m Row is the velocity.

Taking these considerations into account, we readily obtain

. I V (3)

'I il-V rB;C + .B.

Here Xk(V) is the value of Xk at the end of the k-th sector

.() =... [ A" cos -'• . sin-. ]; (4)

N is the number of sectors.

We introduce the notation

,.=hl,--V, C=COS-N-. (5)

Then Eq. (3) assumes the form

Aj~c- Bi -Ak.),(6)
A. (s + 2pc) "-" 1c - 2PS)D. i

From the system of the two first-order difference equations (6)

we eliminate Bk and Bk+l, thereby increas•ng the order of the equation

.A:4 A- 1 - ) 0.
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We seek the solution of (7) in the form

Substituting Deilk in (7) and canceling DeiIL(k+l) out, we obtain
&~l .. - -- 21 (C-- par)

or

Co, -(8)

From Eq. (8) we obtain two values

Ra of I, which are of opposite sign. We
2r

shall henceforth assume IL to be positive.

ii When p = 0 we get p = xv; when p << 1 we
\2 1

10 / I readily obtain

\\% / I'-I

The general sDlution of (7) assumes
the form

Fig. 17. Permissible val-
ues of I/R, obtained from . eI,= + ]--*e-'' -- Ih, co.:Lk +--
the requirement that the + i (10)
phase and fast oscilla-
tions be stable at dif-
ferent values of n. The
solid curve shows-the per- The asterisk following a letter denotes
missible values of I_/
for simultaneous stabil- here the complex conjugate. In order not
ity of both oscillations.
I) Vertical fast oscilla- to have growing terms in the solution,
tions; 2) radial fast os-
cillations; 3) phase os- the following inequality must be satis-
cillations.

fied
1 o: , =C --Ps,, < 1.

Condition (11) imposes certain requirements, which are generally speak-

ing not stringent, on relation I/HO. Figure 17 shows the dependence of

the limiting values of I_/H0 on the magnetic field index for the verti-

cal and radial motions.

We determine Bk from the first equation of (6):
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Ake''• 't' AA•; (12)

di-.

Thus, the values of Bk differ from Ak by a constant factor, so

that we can write
IB .- DLdcdk _H I)ed*-, = ck co, :k + C . (133)

The quantities cl, C2 , DI, and D2 are not independent. The connection

between them is established with the aid of (*12).

The constant D, and also D. and cI can be readily expressed in

terms of the initial conditions (the initial deviation and the initial

velocity). Let, for example, the injector be located at the start of

the sector, and let at the instant t = 0 the deviation be X M X0 and

the velocity k = 0.

Then we must put in (2)
,, ::°= I)*d* = 1; (14)

=, , (D) + D= (15)

The constant D, as well as D2 and c2, can be readily obtained from

(12), (14), and (15)

"d - (16)
C = - -"... ' 2 -ps

The general solution of the equations (I, 27) has the form

Zit.= (De'-j + . c.,i '... + (,,A' . c ,,,,. • (17)

In [32, 38] the solution (17) was interpreted as follows: the

fast oscillations are produced in an accelerator with slotted magnet

with the same frequency xw as in a circular accelerator with radius R0 ,

but the oscillation amplitude is modulated with frequency g. No actual

investigation of (17) was made, and all attention was focused on the

behavior of the oscillation amplitudes [Eqs. (10) and (13)].
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However, such an analysis has several shortcomings. Indeed, the

"modulation" frequency g turns out to be larger than the frequency of

the oscillations (in the, same units) 27rK/N, so that the concept "modu-

lation" does not apply in Formula (17). In addition, in the investlga-

tion of the motion we are interested, of course, not in the amplitude

of the oscillations but in the maximum deviation X.

In the papers cited the authors identify the maximum deviation in

a given sector with the amplitude, although, as will be shown below,

this is not true for all azimuths.

For the calculation of the intensity in accelerators, the main

problems are collisions with the injector and with the chamber walls.

It is therefore necessary to determine the maximum and minimum devia-

tions at the injector azimuth and the azimuths in which the deviations

are maximum and minimum.

As a rule, no such determinations were made, and the ratio of the

maximum to minimum amplitude was introduced instead as a characteristio

of the "imperfection" of the slotted accelerator as compared with the

circular accelerator.

We have obtained a simpler and physically clearer expression for

the free oscillations, with the aid of which we can answer the fore-

going questions and present a more complete and clear description of

the motion of particles in an accelerator with slots.

We introduce the dimensionless length

o = :,•,(18)

where S is the length of the path along the equilibrium orbit. It is

obvious that wtk = ak' where ok is the dimensionless length of the

path covered by the particle in the k-th sector. Therefore the devia-

tion in (17) can be regarded as a function of ok and _k. The discrete
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variable k is connected with the particle revolution number M b: the

relation
"k=N.' (19)

Equation (17) can obviously be rewritten in the form
'/ = (D sin" a+-dD cos a)°• '' el + -- s am (NM p + x (g)), (20)

where

" , I) d.i -- D cos I;
a=A rg; iJ:.-, z--dD•oaol. . (21)

We have written a without the subscript k in Formula (20), since

this formula holds true for any k. With such an expression for the de-

viation XM, it is natural to regard Fc(a) as the oscillation amplitude

at the azimuth a. This amplitude is constant* for a given value of the

azimuth a, for specified initial conditions, and for the chosen injec-

tor position. Thus, by fixing the value of a in the formula for Fo(O),

we obtain an expression for the maximum deviation at the given loca-

tion in the sector. It is obvious that in order to find the extremum

of (20) it is sufficient to seek the extremum of Fc.

Substituting in (21) the expressions for D and d from (12) and

(16), we get

I~~~/A~jos; co (3,___ -. -* a I

•,,, Z;-- - t .-+ -2,,,z+ , (22)

where av = 2wc/N is the length of one sector in dimensionless units

(18). As can be seen from (22), Fc2 consists of two factors, one depend-c
ent only on a and the other on the initial conditions (the parameters

of the accelerator with slots are assumed to be specified). Thus, the
2 rF c2(c) on the (a, Fc2) plane are identical for all sectorscurves F; =

and are symmetrical relative to the centers of the sectors. For dif-

ferent initial conditions, one curve goes'over into another by miAltip-

lying all ordinates by a constant factor.
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The condition dFo/da = 0 yields

where Omax and amin are the azimuths, on which F. is maximal and mlal.

mal. From (23) it foliows that F. has a maximum always at the oentsk

of the sector, while no minimum is produced within the sector, since,.

'min always lies outside the sector. Indeed, even in the case of twv

linear spaces, in accordance with (18), the angular dimension of the

sector is in our units av < ff. Therefore amin is either smaller than

zero, or larger than w, although by definition 0 < a < aV

A/

Fig. 18. Dependence of the fre-
qaency of the fast oscillations
in dimensionless units on the
index n in a circular accelera-
tor ana in the 10-Bev proton
synchrotron (I/o = l2/'): .)
accelerator with slots; 2) cir-
cular accelerator. A) Frequency.

The maximum and minimum values of F2 coincide with the maximu

and minimum of A2 + Bk obtained previously by the other cumbersome

method, using the concept of "modulation" of the oscillations. In ad-

dition, however, we proved here that the maximum of the oscillations

occurs only at the center of the sector, and no minimum is produced in

the sector. Thus, it becomes particularly clear that the characteris-

tic introduced by Dennison and Berlin, referred to above, has no phys-
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ical meaning.

The dimensionless oscillation frequency is, according to (20),

equal to RL in lieu of 2ffc for the circular accelerator. Figure 18

shows the dependence of 41L on n for the parameters of the proton syn-

chrotron of the USSR Academy of Sciences. For comparison, we show also

plots for the frequency 2riT.

The F (a) curve for the specified initial conditions limits thec
region of the sector in which the oscillations take place, and, as can

be seen from (20), the deviation at the given azimuth a reaches a value

F., but nowhere exceeds it. Therefore Fc can be called the envelope of

the particle trajectories for specified initial conditions. The value

of the envelope is also important for the calculation of intensity.

We note that the dependence of Fc on a can be regarded as "spatial

modulation" of the amplitude of the oscillations occurring with fre-

quency Npw/27r. This modulation is produced in such a way, that the dis-

tribution of the amplitudes is constant in time. By way of illustration

we can point out the analogy between Formula (20) with the equation of

a standing wave, in which the amplitudes are likewise different at dif-

ferent points. In the standing wave, however, the oscillations occur

at all points either in phase or out of phase. In our case, the phase

of the oscillations varies from point to point like in a traveling wave.

So far we have considered oscillations of particles in any place

in the magnet sector. Let us consider now the oscillations of the par-

ticles in the linear section. The deviation of the particle from the

equilibrium orbit in the k-th linear section will be denoted by pr

Obviously,

where Xk(av) and Xk(av) are the deviation and its time derivative at

- 87 -



the end of the _k-th sector, and apr is the length reckoned in the Ln-

ear section from the sector, along the equilibrium orbit, in the dlasa,

sionless units (18)., .

Indeed, oprA - t is the time reckoned from the instant tht
pr

the particle enters into the k-th linear section. The length of the

linear section in dimensionless units is equal to 2p. We note that

Formula (24), which we have obtained for an "ideal accelerator with

slots," remains valid under certain assumptions also for a "nonideal

accelerator with slots," i.e., for an accelerator with a magnetic

field in the linear section (see §4).

Using (17), we obtain
[• = I ,.: (s-j-. c;,,,) -- c1 (";,,r -- c)J '•ii •,'&

- [D, (C - ca,,,) - :,•, -- c)J cus i.il +

= Fap (;,,) cw !:. + ' (;,p)!. (25)

The value of PPr(apr) is obtained with the aid of (15) and (16).

After simple transformations we obtain
""pes+ ""ý18 ('",' " 'li)' ( 4 ) .- 2 )

Fi,, P/.,- -- A + ( I + 2p c (26)

It is natural to call the function FPr(opr) the envelope of t

particle trajectory in the linear section. All the statements a&e

above concerning the envelope inside the circular sector apply, obvi-

ously, also to the function FPr(opr). The function FPr(apr) also con.

sists of two factors, one dependent only on apr and the other on the

initial conditions. The dependence on the initial conditions coincides

here with the dependence of Pc(a) on the initial conditions (see (22)].

This, incidentally, is obvious from the very outset from Eq. (22), and

was used to oarry out the caloulations.

The function FPr(apr) is symmetrical with respect to the center

of the linear section (in the center of the section apr - p) and has a

minimum at this point. This is directly clear from (26). Thus,
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fr,' 4--•_2,� -~-+(+ + ( - 2°p (27)

On the boundaries of the sectors, the functions [pPr]2 and FV as
0

well as their derivatives coincide. Indeed, the only difference between

[ppr,2 and p2 lies in the fact that the expression f, = 2ps con a cos(Ov-

- a) is replaced by f 2 - 2pos + apr (apr - 2p). But f,(O) = f l (Ov) ,
: f 2. (O ) f f 2 2 ;'- = - o. . . ... 0 ? 2 = ° .L • . , r

f2-.--) -- - -. 2r .

- f'i(av), where the prime denotes differentiation with respect to a

or apr.

It follows from these calculations that it is possible to intro-

duce a single envelope, which is continuous (together with its deriva-

tive), for the particle trajectories both in the sector and in the

linear section. Thus, the deviation from the equilibrium orbit for any

case can be written in the form

Z.= ,": ) C' , (:,I -,- ,

where a is the length in dimensionless units (18), reckoned from a cer-

tain point along the equilibrium orbit.

a• The maximum of the function Fpr is 10-
cated at the center of the sector and is

equal to

,,l 2

"[.. - . (28)

The minimum of the function pr(,) is located

Fig. 19. Dependence in the center of the linear section and is do-of the coefficienta

on the magnetic termined by Formula (27). We note that the
field index n for
the vertical-(1) and minimum of the function Fpr(a) does not coin-
radial (2) oscilla-
tions. cide with the minimum of the function FcW)

which, as shown above, is not realized. The ratio of the maximum of F0

to the minimum of Fpr is independent of the initial conditions and isc
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equal to

siII: = P - 108p-,' (29) C

Unlike the value of' the "depth of modulation" l/++6" p,-

duced by Dennison and Berlin [32], the quantity a has a perfectly de-

fined physical meaning. For the proton synchrotron of the USSR Aoad"W

of Sciences, a = 1.022 for the radial motion and a = 1.048 for the

vertical motion. The dependence of a on n is shown in Fig. 19 (for

L/ = 4/7). The smallness of a for L/R = 4/7 shows that the spatial

modulation of the oscillation amplitudes is not large.

S3. Some Singularities of Injection in an Accelerator with Slotted
Magnet

Let us consider the singularities of the injection of particles

in an accelerator with slotted magnet. For this purpose we express the

quantities X0 and X/KDw, which pertain to the start of the sector, by

Xi and Xi/•W which pertain to an arbitrary azimuth at which the in-

jector is located. Putting k = 0 and Kwtk = oi in (17), we obtain

%W =(30)
=.4 COS Z, - /W-X Sill 0,.

In the calculation of the collisions with the injector, it is necessary

to know the deviation of the particle from the equilibrium orbit at

the location of the injector. Using (30), we obtain F2(0) at the ai-

muth of the injector

[ C)2 Xt + [P fin (2ci - J) + (a + 2p cos as os(c, - ,a)] (I F-a' =, ( 3 1 )

It is seen from (31) that for a specified deviation of the injector,

Xis from the instantaneous orbit and for a specified position of the

injector, a., there exists a certain optimum value of the velocity

opt at which the two components in the square bracket of (31) cancel

each other out. If the particle is emitted from the injector with Xi-
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*opt
=-Xjpt then it is obvious that the amplitude of the oscillations is

minimal at the location of the injector and is equal to Xi.

The expression for follows directly from (31):
-lip 7 # s i n (a , -- 2 @j)

x... ~ ~ co • c -'• i c oil (s. -- ,

Unlike the circular accelerator, opt does not vanish and is a func-

tion of Xi and ai. The velocity Xj can be expressed in terms of the

angle y between the direction of emission and the tangent to the equi-

librium orbit at the plate where the injector is located:

(32)

We denote the optimum angle by yopt
S, "T , ý', bj, - 2a,) (33)

"7o0T = A,• +..' +I "cOS , COS (0, -- )

In this notation, Formula (31) assumes the simple and physically

clear form:

JIj 1101o', (34)

where
/i = " :" 2t s .",''. O -- a,)

"h" :(35)

If we let the lengths of the linear sections approach zero (p -. 0),

then f -• 1 and 7 opt -* O, so that we arrive at the ordinary formula for

circular accelerators:

(36)

Comparing (33) and (34), we conclude that in our case the injec-

tion differs from the injection in circular accelerators in two re-

spects. First, the optimum angle does not vanish and, what is more Im-

portant, varies during the injection process, owing to the variation

of Xi. Second, the deviation from maximumlangle leads in our case to a

stronger increase in the oscillation amplitude. This amplitude will be
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the same as in a circular accelerator, but not with radius RO, but

with radius fi.RO. Figure 20 shows the dependence of yopt on the in-

jector position. For the ,proton synchrotron of the USSR Academy of

Sciences, Topt varies from 0 to 3', while fi - 1.063 for the radial

motion and f = 1.042 for the vertical motion.

To calculate the collisions with the chamber walls we must know

the amplitude of the oscillations not only at the injector azimuth.(ai),

but also at arbitrary azimuth (a). Using (22), we write

(37)
+;,.I)+ %:Us alcu5 . cO

where Fc(ai, a) is the amplitude of the oscillations at azimuth a, when

the ejector is located at azimuth a1. The value of FP(aO) is deter-

mined from Formula (34).

7. Alum 3

2 xcY C e L

~~'h" 4

Fig. 20. Optimum angle yopt at Xi = 50 cm

in the 10-Bev proton synchrotron (R0 =

= 28 m, IR0 = 2/7) as a function of the

point of injection. 1) Linear section;
2) circular sector;3) Topt' min.

So far we have assumed that the injector is located in the sector.

If it is located in the linear section, the formulas will differ som-

what from (34) and (37). Let us establish the connection between the

values of X0 and i0/xw, referred to the start of the sector, with Xi

and X0/cw, referred to the point (opr)i inside the linear section:

,- - .. -- .~9
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Substituting (38) in (26) and (22) and carrying out a series of anal-

ogous calculations, such as separation of the optimum angle, determina-

tion of fpr' etc., we obtain an expression for the amplitude of the

oscillations at any point Opr and at any azimuth o, if the injector is

located at the point (Opr)i:
jp+ p + ,(. p,, ''at- (- -- + t

I (" ")' "• -t•- +,0 I(O%), - 2PI ",Ph), '.+A TPY

IF,( ((op),)i' R + 2p (cosp a C (4..- ), +

+ p .!( _np. ]o, (39)

where
/ + 2pc + a(:,),-2PI (ap),.In = Sil. . (40)

ýnp I
'= - Ito ' + 2c'-('• •%), -- :la,)"

Comparing Formulas (33), (35), and (37) with Formulas (39) and

(40), we see that we can write the expression for the envelope in gen-

eral form, i.e., for arbitrary location of the injector on the orbit:

(41)

where

fa+2p,..:n: -I for a in the sectori~o) • ""'"(42)

8+ 2_w 4i(c-' for a in the linear section,
bill 'U

and

'4d1 1:1 
(43)

In practice, the parameter p << 1, so that the expression for f(a)

and yopt can be simplified

cos (2°- 0 for a in the sector,/(o)= '(42')
,for i in the linear section,

= .- p (j ;' for a in the sector,•,,., =(43')
. P) for a in the linear section.
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In the calculation of f(o) in the linear section it is necOessa7

to bear in mind that the third term in (42) is of order p2 , whoreas we

carry out our calculation everywhere with accuracy to the ft'st power

of 2. We retained this term because its order decreases upon differen-

tiation.

As was shown above, the function f(o) is continuous, together

with its derivative (see also Figs. 20 and 21). Figure 21 shows a plot

of f(o) for vertical (x q r) and radial (K = 41 - n) oscillations

at different values of the index n. It is seen from the figure that

f(o) has a minimum in the middle of the linear section and a maximum

in the middle of the sector.

Formula (43) clarifies the physical meaning of the optimal angle

Topt" It turns out that if we draw an envelope through the injector,

then yopt coincides with the direction of the tangent to the envelope.

Physically this is obvious from the very definition of the envelope.

Indeed, if the direction of emission of the particle crosses the en-

velope passing through the point of injection, this means that at the

trajectory of the particle there exists an envelope which passes above

the point of injection, which contradicts the definition of the op-

timal angle. This statement can be verified directly by differentiating

(41) with respect to the length of the trajectory aRVic.

It is clear from (41) that the amplitude of the oscillations at

the place where the injector is loca:ed (for arbitrary location of the

injector along the orbit), is equal to

I I'4 o)" -P P V + -A (0,) --

Thus, In calculating the collisions with the injector, the entire

singularity of the accelerator with slots manifests itself in the ap-

pearance of the quantities Topt and f(ci), which are functions of the
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Fig. 21. The function f(o) for different values of
n for radial and vertical oscillations. 1) Straight
Tine section; 2) circular sector.

injector position. It is clear from the plot of Fig. 21 that f(o.) has

a minimum at the middle of the linear section. Therefore, in order to

reduce the probability of the particle striking the injector, it is

most convenient to place the latter in the middle of the linear por-

tion. However, as is clear from Formula (41), the coefficient preceding

the square bracket will assume in this case a maximum value. This

means that this injector position increases the probability of colli-

sion with the chamber walls. The practical choice of the injector posi-

tion is determined by design considerations and by the convenience

with which the high-energy particles can be admitted into the chamber.

Therefore the length of the linear section should not be very large,

so that f(o) differs little from unity. This is precisely the situation

in the proton synchrotron of the USSR Academy of Sciences.

The envelope method developed above has a wide range of applica-

tion. The properties of the free oscillations, which were derived here,

are general properties of solutions of eq-tations with periodic coeffi-

cients. It is known that if the oscillations are described by an equa-
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tion of the type

where g(a) is the periodic function with period c0, then, with the ex-

ception of several cases (resonances, edges of the stability regions),

the solution can be written in the form

where (a() is the complex periodic Ploquet function and p in the char-

acteristic exponent. We normalize the Floquet functions in such a way

that the Wronskian of the functions

';)=.e "9(0) and

is equal to -2i. Then the oscillations of the particles at the azinuth

a can be written in the form

ý (.) ý-= P, (Z) ,, .:l -- ( ,

where N is the number of periods of the function g(a) contained in the

entire orbit, and

• ' ] •.. )" " . ,l:.,j -

The function f(a) is the modulus of the Floquet function

/I0-) = ýF (,) +" ).

The quantity x in the expression for the amplitude is in this case an

arbitrary number, introduced in the definition of the dimensionless

quantity a.

Cte d.er:':. of these s."--. .. .s: of

this method to a strong-focusing accelerator, will be given in Chapter 6.

V4. Calculation of Particle Trajectories with Account of a Magnetic
Fo.'eld ifn t.ho rinoar Sections

So far we have disregarded the presence of a magnetic field in

the linear section. As shown by estimates, even in the 10 Bey proton

synchrotron, where the ratio of the height of the magnet gap to the
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S~Fig. 22. Characteristic of mag-K netic field Mz0. 1/fH0 near

the edge of a straight magnet,
as given by model measurements.

length of tne linear sections is small, failure to take into account

the magnetic field in the sections would lead to a loss of part of the

working region of the magnet (-12 cm).

As will be shown below, if the penetration of the magnetic field

into the linear sections is taken into account in the design of the

magnet, it is possible to avoid noticeable losses of the working re-

gion of the magnet due to this cause (at least at the instant of in-

Jection).

The magnetic field in the linear sections should be measured with

models. By the time the work was outlined, we had only the results of

measurements on models (solid iron, direct current), carried out at

the Physics Institute of the Academy of Sciences [17, 42] in 1949, and

also the results of measurements made in 1951 and 1952 on the magnetic

field of the proton synchrotron model.* In addition, an approximate

theoretical calculation was made. On the basis of these measurements

it can be concluded that the decrease in the field in the direction of

the Z axis in the equilibrium-orbit zone (see Fig. 24) is quite small.

We shall therefore assume in the present section 2H/by - 0. Actually

this condition is not a limitation: MH/oy influences little the char-

acter of the motion, since on the average 'H/ay.y is considerably

smaller than HO - Hz. This can be verified by direct calculation of
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the orbit, as was indeed done (22]. Figure 22 shows a plot of x

x Vho in the linear section. The abscissas represent the lengths I•2

units of magnet airgap. Mhus, the magnetic field In the linear section )

depends only on the coordinate x.

The results of measurements on the proton-synchrotron model have

shown that the dependence of the magnetic field on the x coordinate is

different in a solid magnet from that in a laminated one. This is

caused by the existence of an air gap between the steel laminations.

Therefore the effect of the edges of the magnet facing the linear por-

tions on the magnetic field inside the sector is much stronger. We

shall not use the plot of Fig. 23 for quantitative calculations. Qual-

itatively, the plot of Fig. 23 (obtained with the aid of measurements

on a solid magnet) describes correctly the variation of the field in

the linear section.

412

Fig. 23. Characteristic of mag-
netic field Hz(x)/H 0 at the
edge of a straight-line magnet
according to model measure-
ments.

The formulas of the present chapter and of the next chapter were

used successfully to calculate the trajectories and to choose L-ie 6*eoo

metrical dimensions of the 180 and 10,000 Nev installations.

To investigate the motion of the particles in the linear section,

we make use of the following procedure.
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The equation of motion (I, 27) in the central plane of the limear

section has the form

where w - eH/mc is the frequency of revolution in the magnetic field

H0 of the circular sectors. Integrating the equation, we obtain

Changing from the variable t to the variable x in accordance with the

following approximate relation (which is valid with accuracy to within

y2 )
d = wRod, (44 )

we obtain

H

where the prime denotes differentiation with respect to x.

Fig. 24. Diagram illustrating
the notation.

Equation (45) will be used to Join the solutions of the type (2)

in two neighboring sectors. The magnetic field in the sector, on the

boundary with the linear section, amounts to only 78-84% of the field

inside the sector. Thus, this boundary cannot be used as the line for

Joining the solutions of type (2), unless azimuthal asymetry is intro-
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duoed.

Let us introduce the concept of effective length of the linear

section ,

where 1 is the length of the linear section and Dh is the height of

the magnet gap. The quantity 2b ranges from 1.5 to 2.5, depending on

the construction of the magnet. Thus, we add to the geometrical length

of the linear section, on each side, a length bDh. We shall assume

that on the boundary defined by lef the magnetic field differs from H0

by less than 1-5%.

-Let us integrate (45) over the effective linear section:

S ao f

() )(I fd J ,(Z)dt. (47)
0 0

We denote the deviation p from equilibrium orbit at the start of

the sector by p(lef), and at the end of the orbit by p(O). Let the ef-

fective angle of the sector be v (Fig. 24) and let it differ from 7r/2

by 60* Then, obviously (Fig. 25),

NO•) = P P) Cos P (4) - p (V4)T

We neglect the second term (60 < 0.02-0.06) and obtain

.(1,4) = P (14); .(U) = P(0). (48)

With the same degree of accuracy, we get

P2-- , •

With the aid of (48) and (49) we rewrite (45) and (47):
, C o) I,.

V- (50)

where
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Pig. 25. Diagram illustrating the no-
tation: 1) particle trajectory; 2)
instantaneous orbit.

Equation (50) differs from the analogous equation for the "ideal

accelerator" with slotted magnet in the presence of the terms 6 and q.

We therefore obtain in lieu of Eq. (6)

, + .,Akc- Bi.s = A47"; (51)
T, + ~' x+ 2PO) -j 4(c - 2ps) 144

where

C CCO-'i s0, m Sil 4, ~; 0,= 'Al;

a is the effective length of the sector in the dimensionless units

(18). Thus, we use the same notation as in the preceding section, ex-

cept that all the geometrical dimensions are replaced by effective

ones. Apart from this, Eq. (51) differs from (6) in the presence of

the free terms e and n.

The general solution of (51) is the sum of the general solution

of the corresponding homogeneous equation (i.e., Eq. (51) without n

and s] and the particular solution of the complete equation. We have

obtained a solution for the homogeneous equation in the preceding sec-

tion. The particular solution can be readily obtained, since the free
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terms are constants. With this remark taken into account, we readily

obtain

2 ( 1 -- - ; -J N) ( 5 2 )

Thus, the motion in the _k-th sector will be described by the fol-

lowing equation:

The constants D1 , C1, and C2 are not, as already shown, independent

but are related by the two equations in (14). The constants C1 and D1

can -be readily determined with the aid of the initial conditions
c, /. .,,, (54)
(DI +"A" :) 04. •

The constants C2 and D2 can be determined from Formula (14)

D - , ,•,L -( -A :"." - D" j . (55)

C i , [ = ý P)P

If we make the following change of variables:
-• = e ' ,. = Pjt - A * Sill ,-Aij, - D. COS UX..,•,(5

then Eqs. (53), (54), and (55) become similar to Eqs. (15), (16), and

(17), obtained for the "ideal accelerator with slots." Thus, the pres-

ence of a field in the linear section changes the instantaneous orbit

(and also the equilibrium one), with respect to which we meaasue the

coordinate p. If p is measured from the new instantaneous orbit, then

all the results of the preceding section remain in force.

The equation of this new orbit can be readily written down:

P, = A* sin VT- ,U * C" or¢--o, (57)

where 6 = wt is the azimuth of the particle, reckoned every time from

the start of the sector (line MN on Fig. 24). Inasmuch as the new orbit
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is not a part ot' a olvcle cwou ..n uio sector, not all the working re-

gion can be utilized. In order to determine the value Ap* of the unused

working region, we must calculate Ap* - pemax - P*min* If we substitute

the numbers for t"he acceleratcr of the USSR Academy of Sciences, we

obtain 4p* - 12 cm.

One can in general eliminate the losses in the working region due

to the presence of the magnetic field in the linear sections (at least

during the injection period) by choosing in suitable manner the angle

subtended by the magnet sectors. Indeed, in order to avoid distortion

of the orbit, we require that

A* = B* = 0.

This condition is equivalent to the conditions

- I., .d(58)

Equations (58) can be satisfied in some cases by suitably choos-

Ing the angle subtended by the sector:
• ," • - i- , i. , 2 D

=* -- = /'), • .(59)

If the magnetic field is symmetrical with respect to the center

of the linear section, then

S 0 ) 0

Introducing the notation

4,,•

we rewrite (58) in the simpler form

-0 -
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- =o. (60)

Thus, in the case of a symmetrical field the second equation In

(58) and (60) is the consequence of the first. The angle subtended by

the sector is
bD. D L4.0 p

' =4- -TI 70 (61)

Thus, for example in the proton synchrotron of the USSR Academy

of Sciences, the sectors must be made to subtend an angle not 7r/2, but

somewhat less. The exact value of * can be determined only after model

measurements. One must bear in mind, however, that owing to saturation

and to other factors Hsr and lef do not remain constant, but change

during the course of acceleration. Therefore Eqs. (60) can be satis-

fied only within a certain time interval.

.With the aid of (60) we can also simplify Relation (52):

*-.• -- '' (62)

If Condition (60) is satisfied, then Relation (50) coincides with

the analogous equation for the "ideal accelerator with slots," and Eq.

(51) coincides with Eq. (6). The only difference lies in the fact that

in place of the geometrical length of the linear section it is neces-

sary to take the effective length.

If the magnetic field is asymmetrical with respect to the center

of the linear section, then in general it is impossible to choose an

angle * such that A* and B* vanish simultaneously, and consequently,

that the orbit does not become distorted.
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Manu-
script [Footnotes]
Page

No.

85 We recall that we are not considering here the attenuation
due to the increase in the magnetic field.

97 Magnetic measurements made on the 10-ev proton synchrotron
magnet have essentially confirmed our calculations and the
validity of the assumption made later on.

Manu-
script [List of Transliterated Symbols]
Page

No.

87 np - pr = promezhutok = section

91 OnT - opt = optimal'nyy = optimal

96 a- nach = nachal'nyy = initial

99 30 - ef = effektivnyy = effective

103 cp - sr = sredniy - average

--I I
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Chapter 3

EFFECT OF DEVIATION OF THE MAGNETIC FIELD FROM
THEORETICAL ON THE MOTION OF THE PARTICLES

"1. Introduction

Certain deviations from the theoretical magnetic field are always

observed in a real magnet. By theoretical field in the magnet sectors

we mean a field independent of the azimuth 0 within the angle v (see

Fig. 24) and uniform in all the sectors. In addition, we assume that

all sectors have the same symmetry plane. In the linear sections, the

theoretical field is regarded to be one which causes the coefficients

6 and I to vanish, in accordance with (II, 60). Another important as-

sumption is that all four sectors are similar to one another.

If we realize the theoretical field, then the instantaneous orbits

of the particles (i.e., the orbits about which the fast oscillations

are executed) have inside the sectors the form of a circular arc, lo-

cated symmetrically with respect to the chamber walls. Any deviation

of the magnetic field from theoretical will lead to a distortion of

the instantaneous particle orbit, which is equivalent to the loss of a

certain fraction of the working region of the magnet. This is illus-

trated in Fig. 26. The distorted orbit (solid line) deviates from the

theoretical one (dashed line) by ±Al/2. In order for the particles not

to strike the chamber walls (or the injector), it is necessary that

their maximum oscillation amplitude be smaller by A1/2 than the oscil-

lat.ion &-.:1.ude .-e ;e:nss-.ble n -a n -. 12f-ield. As

will be shown in detail in Chapter 5, the intensity of the particle
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beam is directly connected with the permissible swing of the oscilla-

tions about the equilibrium orbit. Thus, the shaded area in Fig. 26 is
in fact not used to produce an intense beam of accelerated particles.

The smaller the deviations of the magnetic field from the theoretical

value, the less distorted the orbit and consequently the larger the

intensity of the particle beam for a specified dimension of magnetic

gap. At sufficiently large deviations from the theoretical field, the

acceleration of the particles becomes impossible at all.

----------------
S"_-.-. _-- -. _-.-. -.- -_ - u--.. .. s o.bits,

the deviations of the magnetic field from the theoretical can cause in

some cases an increase in the oscillation amplitude. Such an increase

in the amplitude has a resonant character* and can occur for certain

fully defined values of the magnetic field index n. Therefore the value

of n in the main part of the working region of the magnet is chosen

such that it does not correspond to resonance. The resonance phenomena

will be investigated in detail in the next chapter.

It is clear from the foregoing that a clarification of the influ-

ence of the deviations of the magnetic field from theoretical is one

of the most important problems in accelerator theory.

In an accelerator with a slotted magnet, the influence of disturb-

ing phenomena on the motion of the particles is much stronger than in

circular accelerators. Moreover, the presence of the linear portions

makes it possible for entirely new disturbances to arise (inaccuracy

in the installation of the sectors, shift of the symmetry planes of

the magnetic field in the sectors, inaccuracies in the angular dimen-

sions of the sectors and in the length of the linear sections, differ-

ence between the average fields in different sectors, etc.).

Usually the deviations of the fields from theoretical are divided

into a statistical part and into an instantaneous part, in accord with
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Fig. 26. Distorted orbit. The
shaded region is the actually
lost portion of the radial gap
of the magnet.

the measurement method used in circular synchrotrons and in betatrons.

We shall not do this, and use the term deviation to denote everywhere

the total deviation.

Our investigation (17], carried out in 1949 (together with A.M.

Baldin and V.V. Mikhaylov) is indeed the only one devoted to this ques-

tion. It served as the basis for the design and to the choice of tol-

erances for the 10-Bev proton synchrotron of the USSR Academy of Sci-

ences and for the 180-Mev model.

We shall consider in succession several deviations of the mag-

netic field from theoretical, assuming these deviations to be small

quantities. Obviously, only this case is of practical interest. Each

of the inhomogeneities will make its own contribution to the distortion

of the equilibrium orbit. In view of the smallness of the deviations,

it is natural to assume that the total distortion of the orbit is the

sum of the partial distortions, each considered separately.

§2. Calculation of the Perturbed Orbit

In the presence of various typesc o1' perturbations in circular ac-

celerators, the motion of the particles in the vertical and radial di-
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rections are described by the following differential equation:

•,: :,•(11/D + Im.--- ,If,: (a), (1)

where the dot denotes differentiation with respect to the azimuth e.

The function g(6) is periodic in e with period 27r. The general solution

of (1) can be written in the form
a+m.

Z = Asit v'"-)':ens•O z@ .+ )Cos"-

The function X*(e) has a period 27r and can be regarded as the

equation for the distorted orbit.

An analogous expression can be obtained also for the accelerator

with slotted magnet, by using the solution of the homogeneous equation,

investigated in detail in Chapter 2, to determine the periodic solu-

tion of the equation with right half.

It is sometimes convenient to introduce the effective angle sub-

tended by the sector, v < 7r/2, as was done in the preceding chapter.

Then during one revolution the azimuth 8 increases by 4 v < 27r, if it

is assumed that the azimuth 8 does not change in the linear portions.

In this case the equation of the distorted orbit has the form

We introduce the following notation:

*,.(F))=g(6); g,(O)=g(•-i-d,); g,3(6)=g(2-*+e), etc. (4)

I.(O)=x . (e); /.•,-•))=X * (V+-) , etc.

As in the preceding chapter, we assume that the angle is measured from

the start of each sector and varies from 0 to v.

The equation of the distorted orbit in the sectors is sought in

the form
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x A=•, cos(v -e) - L, cos ie+x*(e) (5)

with supplementary periodicity conditions

4 X+4 =A. 3+ 4 =BX, (6) 4
where N is the number of the sector (1l N< 4).

~H.

b

Fig. 27. Distortions of field andform of distorted orbit.

Equation (5) with supplementary conditions (6) can be regarded as

the equation for the new distorted orbit. The oscillations of the par-

ticles about the distorted orbit will occur in exactly the same manzier

as about the symmetrical orbit. Indeed, if we measure the deviation XN

from the new orbit, we obtain an oscillation equation which coincides
exactly with the homogeneous equations of the preceding chapter.

It is easy to obtain the equation relating AN and BN with AN+1

and BN+1:

As,, - -ýc ' pI.,.( =. V-c-! - . (7)

where the notation of the preceding chapter [see (50, 51)) is used for
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N and TN' Unlike the previously considered cases, we assume that the

quantities aN and qN do not have the same values in the different lin-

ea: sectio.ns. ."-, :e &I = Vc/ an N per:a.n to the

linear section between the N-th and the N + 1-st sectors.

We seek the solution of (7) in the form

AY.= D•,+ Dý- 4, (8)

where DN is an unknown function of number N, satisfying the equation

+1 iD. i. /.V; (9), _ ,,- C'. (c- .,,. + C..+ 2p .

With the aid of (9) we can readily obtain the periodic solution

for AN, which satisfies simultaneously Relations (6) and (7). For this

purpose it is necessary to use the periodicity of the function fN" As

a result of the calculations we obtain

Sm. L:&(10)

Thus, the problem is completely solved.

By way of an example, Fig. 27 shows the distorted orbit for dif-

ferent values AH of the deviation of the average field in the magnet

sectors from the theoretical value. The ordinates represent the devia-

tion of the orbit from the average position in the chamber. The ver-

tical dimension of the direct angles is equal to the change in the

radius of curvature of the particle trajectory in the given sector,

due to the deviation of the magnetic field from the average value.

Figure 28 shows the orbit in the 180-Mev proton synchrotron, cal-

culated in accordance with the derived formulas and the magnetic-meas-

urement data.

S3. Motion of Particles in Vertical Direction

The motion of the particles in the vertical direction should be
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Fig. 28. Orbit in I80-Mev proton synchro-
tron as obtained by magnetic-measurement
data. The arrow indicates the linear sec-
tion with magnetic field different from
theoretical. 1) Direction of motion; 2)
sector; 3) injector.

examined with particular care. Indeed, the region accessible for par-

ticle motion in the vertical direction is 5-7 times smaller thanl that

in the radial direction. It is usually assumed that the inhomogenelties

arising in the magnetic field do not give rise to additional oscilla-

tions in a vertical direction. In fact, however, in an accelerator

with slotted magnet, unless special measures are adopted, additional

vertical oscillations with large amplitude can be produced. Connected

with this phenomenon is a very dangerous resonance between the vertical

oscillations and the revolution frequency, which occurs in the 10-Bev

proton synchrotron, unlike in the circular accelerator, at n - 0.84,

which lies within the stability region.

Owing to the structural features of slotted magnets, the "central

magnetic plane" in such magnets is actually not a plane.

The reason for it is, first, that inaccuracies are possible in

the installation of the individual sectors relative to one another, as

a result of which the "average magnetic planes" of the different sec-

tors may be situated at different levels; second, each sector Is made

up of 12. block.s, so that the "central plane" will not be a plane even

within a single sector; third, the geometrical central plane may not

coincide with the central magnetic plane, and the position of the lat-

ter is influenced by many factors (in particular, the location of the
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magnet windings).

Assume that the equation of the surface on which Hr = 0 can be

written in the form

S<..V 4.

w•.tere ;he :. --- z_- "* "'rom •e -- ;fane, 2chsen such

that V. %z,--. To solve the problem of interest to us we can use the

results of §2, if we assume K = -; X = z; eN =TN = 0. Without stop-

ping for the self-evident calculations, we shall consider a few Im-

portant cases.

We assume that the central magnetic planes of the sectors are

shifted parallel to one another, and then all the zk in (11) are equal

to zero. Formulas (3) and (10) are valid in our case if we assume

(12)

and replace ýfl -- n by 417.

Before we write out the theoretical formulas, let us call atten-

tion to the fact that in the case of the vertical motion we have a re-

lation, which has a high degree of accuracy, fully adequate for the

calculations on the 10-Bev proton synchrotron,

cos. = 0,8/4 -n. (13)

For example, when n = 0.55 Eq. (13) yields for cos p a value 0.29.

Exact calculation leads to 0.298. When n = 0.95, the exact value of

cos p is 0.1, while the approximate value is 0.09.

Then, according to (10) and (3),
(2.68 - 2n) (1:' -"' A:

-- V.+2 -- S+1)(14)A•= ,, ~(O,Mv, - n) (1,,84 - n); 14

z.V A.S.co84 " ( j - - A X- I cos O + I:.V.

Along with the coordinate zN, which is measured from the central

plane defined above, we introduce a coordinate Z'N, measured from the
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central magnetic plane of the N-th sector. Obviously, z'N = ZN- &ZN

let us consider three particular cases, shown schematically in

Fig. 29:
1) •z=.1,=a; 2) AZ:, 4a; 3) Az -A:, =2a;

=-- • -a;-1:3 a.

Let us calculate the maximum deviation from the central magnetic plane

max ) 2- . C) 1.
S0..•-V- l 14 Aux " .•i-

3 , .:;- ..- c-- (4 + c)
) -, - , (15)

I Z

I ~- Za

Fig. 29. Distortions of cen-
tral magnetic plane and form
of section of central plane of
vertical oscillations.

As can be seen from (15), in cases 1) and 3) the value of z'max

exceeds a by many times and becomes infinite when cos L - 0 (i.e.,

when n = 0.84). This is connected with the fact that when cos IL - 0

resonance sets in between the vertical oscillations and the perturba-

tic.s of o -e c--.a.n.r•See
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Thus, when the magnetic planes are shifted parallel to one another,

we obtain curvilinear surfaces, the projections of which on the ver-

tical plane are shown in Fig. 29. It is precisely near these surfaces

that the free vertical oscillations are now executed. We can therefore

call them the effective Central "planes." It is clear that owing to

the distortion of the central "planes" we are unable to use part of the

magnet gap, equal to 2z'max. For example, if the inaccuracy in the in-

stallation of the sectors is +3 mm, then we lose 34 mm in the vertical

gap of the magnet when n = 2/3 and 130 mm when n = 0.75.

Let all the AZN be equal to zero, and then we can use Formula (5)

to calculate the coordinates of the effective central "plane," after

making in this formula the following obvious substitutions:

l "" k:ACos 2Y:

'Io .- cos:i)

=A. - .- , (16)

We see that the effect of the odd harmonics exceeds that of the

even ones. The reason for it is that for vertical oscillations cos g

is quite close to zero. In other words, in the region of the values of

the index n of interest to us we are close to resonance between the

revolution frequency and the vertical oscillations.

Let us consider some odd harmonics in Expression (16).

We readily obtain

r
" . OS : ! cs ' ,, •- -A,--(--) o A

k 2 --- n) +

+ (17)

In (17) the greatest contribution is made by the first two terms,

whose maximum value is
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We shall assume that the maximum of (32) occurs at the same values of

% arnd 0 as for the first two terms. This is true if cos g << kl/2R.

In this case we obtain

ht kI (18)

where 6 k = 1 if (k + 1)/2 is even and 6k 0 it (k + 1)/2 is odd.

As is seen from (18), the effect of the first harmonic is approx-

imately five times larger in amplitude when n = 2/3, and 8.5 times

larger when n = 0.75. The effect of the third harmonic (when n - 2/3)

is approximately 8 times smaller, and that of the fifth harmonic 15

times smaller than the effect of the first harmonic. The effect of the

second harmonic is 25-30 times smaller than the effect of the first

harmonic.

•4. Conclusion

In the preceding sections we investigated in detail the motion of

particles under the action of various disturbing phenomena. We have

shown that if we disregard resonance effects, then the action of any

kind of perturbation reduces to a distortion of the equilibrium orbit

or the surface about which the oscillations are executed, and does not

affect the character and magnitude of these oscillations.

The forms of orbit distortion have a relative stability, since

the disturbing phenomena are in themselves relatively stable. During

the acceleration process, the form of the orbit changes very slowly.

In the i0-Bev proton synchrotron there will be two periods during which

the form of the distorted orbit changes apparently at a relatively

larger speed. The first is the initial period of acceleration, as the

magnetic field increases from 150 to 1000 oersted. The remanent mrag-
... ~~~~-----------------------._..,0....._ _i_ :' -- l -'-s••=. e------ --.--

ence the form of the orbit at 1000 oersteds. Second, at the very end
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of acceleration, starting with a field of 11,500-12,000 oersteds, the

saturation phenomena increase sharply and influence the form of the

orbit. Of course, the most important is the form of the orbit at the

start of the acceleration.

If the orbit were to be known beforehand, suitable changes in the

construction of the chamber and of the magnet could help avoid losses

in the working region of the magnet, similar to the account of the de-

viation of our orbit from circular due to the presence of the linear

seCio.-.s. T-.us, :-=- losses i.n :-a e.;..o:.-eJ po.tion of :he w'crki-g re-

gion are due to the fact that the magnet and the chamber are designed

for an orbit consisting of four arcs joined by straight lines, whereas

the actual orbit assumes a different complicated form.

On the basis of the foregoing formulas it becomes possible to do

the following: 1) calculate the form of the particle trajectory for

any distortions; 2) estimate beforehand the orbit distortion brought

about by some particular deviation of the field from theoretical; 3)

ascertain what types of distortion are the most dangerous; 4) choose

methods for mutual cancellation of the distortions; 5) choose (with

account of the results of Chapter 4) the value of the magnetic field

index n in the main part of the working region of the magnet; 6) de-

termine the required accuracy of the magnetic measurements; 7) deter-

mine the required accuracy of manufacture and erection of the magnet

(angular dimensions of the sectors, lengths of the linear sections,

etc.); 8) choose (with account of the results of Chapter 5) the dimen-

sions of the magnet cross section.
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Manu-
script [Footnote]Page.

No.

107 Resonant phenomena may also not be connected with deviations
of the magnetic field from theoretical, but, as will be
shown in the next chapter, such resonances in annular mag-
nets with weak focusing hardly play any role.
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Chapter 4

RESONANT PHENOMENA IN ACCELERATOR
WITH SIDTTED MAGNET

51. Introduction

The various possible resonant phenomena in accelerators should be

the subject of a special analysis. In the first three chapters we have

investigated in detail the L.-'ee and radial-phase oscillations. All the

calculations were made in the linear approximation. Usually such an

analysis is satisfactory, and inclusion of the second and higher ap-

proximations is of no practical use. This holds true, however, only

away from resonance between the different modes of oscillation. Reso-

nant phenomena between the fast oscillations in circular accelerators

were considered in many papers (see, for example, (43-45, 56, 57]).

Resonant phenomena in an accelerator with slots were first inves-

tigated in detail by the author (25, 27]. As will be shown below, the

resonant phenomena in accelerators with slotted magnet differ essen-

tially from resonant phenomena in a cyclic accelerator. This difference

manifests itself primarily in the fact that several resonant values of

the magnetic field index n are strongly changed even when the lengths

of the linear sections are small.* This is particularly significant

when the resonant shift of the index is from the region of values of n

lying outside the working region of the magnet to the inside of this

region. This is clear from the fact that the frequency of the free os-

cillations in accelerators with slotted Magnets (as can be seen from

Fig. 18) changes and this causes a change in the index n at which reso-
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nance with the revolution frequency sets in. The resonant value of n

hardly shifts at all in the case of nonlinear resonance between five

oscillations, for so long as p - Ix/2R is small, the frequencies of

the vertical and radial oscillations in accelerators with slots vary

in proportion to each other. Therefore the well-known resonance occur-

ring at n = 0.2 between the vertical and radial oscillations occurs in

an accelerator with a slotted magnet at practically the same value of

the magnetic field index n. Another distinguishing feature is that in

an accelerator with slotted magnet there occur, in addition to the or-

dinary resonances, also multiple resonances, i.e., resonances with the

external force having a frequency not equal to the natural oscillation

frequency, but to a multiple of this frequency, i.e., larger or smaller

by an integral number of times. The theory of such resonances was

first developed in general form in the classical paper of Mandel'shtam

and Papaleksi [49]. The reason for the occurrence of multiple reso-

nances lies in the anharmonicity of the fundamental oscillatory process.

Unlike the synchrocyclotron, the miorotron, and annular accelera-

tors, the principal role is played by the magnetic field in the region

where n > 0.2 0.3. According to the technical specifications, 0.55 <

< n < 0.75 in the main part of the working region. It is therefore

meaningless to consider the well-known resonance at n = 0.2, and also

the resonance at n = 0.25 (the value of n is given for the circular

accelerator), etc. In annular accelerators with slots the principal

role is assumed by resonances between the radial oscillations and the

revolution frequency, brought about by the presence Of deviations of

the magnetic field from the theoretical, and resonances between the

vertical oscillations and the revolution frequency, brought about by

the distortion of the central magnetic plane (Fig. 30).

In addition to resonances with the free oscillations, resonances
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Fig. 30. Resonant values of n as a
function of IA for vertical-(l) and
radial (2) oscillations.

with the phase oscillations can occur in the accelerator. This ques-

tion was raised for the first time in the summer of 1950 in a discus-

sion of the power supply for the magnets of the 180-Mev and 10, 000-Mv

proton synchrotrons, held at the Scientific Research Institute for

Electrophysical Apparatus of the Ministry of Electric Industry, USSR.

It turned out that the magnetic field will contain small harmonic com-

ponents with frequencies lying in the range of variation of the phase-

oscillation frequency. Calculations which we made at that time indi-

cated that in spite of the exceedingly small amplitude of these har-

monics (-0.02 gauss), this phenomenon may prove dangerous in some cases.

In addition, we called attention to the danger of exceedingly small

oscillations in the frequency and amplitude of the accelerating elec-

tric field.

12. Generalization of the Averaging Method

In solving ordinary differential equations with slowly varying

coefficients or with small nonlinearities, and also in the investiga-

tion of the passage of a system through resonance, the "method of av-

eraging," which was established on a solid mathematical foundation in

the papers of N.N. Bogolyubov (33], plays' an important role. This

method in particularly convenient if we are interested in first-
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approximation calculations, an is usually the case. Prom the mathemt-

ical point of view the changeover from the circular accelerator to an

acceleratc o with slottedmagnet denotes the changeover from ditferen- . )

tial equations to difference equations or from equations with constant

coefficients to an equation with periodic coefficients. This averaging

method can also be generalized to include the present case.

The motion of the particles in the circular sector can be do-

scribed by Eq. (III, 1). It is possible to change over from the second-

order differential equation (III, 1) to two first-order equations in

the two variables A(O) and B(9), using the following transformation

I.

44

-A A..(0r1 CUs ,dt -- B (0) sin " ,.d(,.

where the angle G varies from 0 to v. Substituting (1) in (III, 1), we

obtain differential equations for A and B:
C(o,) . .I () [A(cos.2a.t-B((j)sin 2)];

(fl (2)

where &=JM and x - 4H.Hx. Were the angle 8 to vary without limit,

then, on averaging the equations in (2), we would find that the terms

in the square brackets vanish. For example, if g - 0, we obtain di-

rectly the known law governing the variation of the amplitude of free

oscillations in a circular accelerator. Indeed, in this case A() -

-f -= 4fHA. For an accelerator with slots, such an averaging yields

noth.r-A, s!.ce 6 "arles .-:1thin a :.•_::ed range. I: Is obvious, however,

that in this oase, too, the expression In the square bzraokets in (9)

should play no role.

We mark the quantities A, B, X, and x with the index k, which in-

dicates the number of the sector. In addition, we introduce
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1/1, (0) -,, (0) = A;..,. (0) = 1.•; A&h (V) = ',elk
I,(,)2,,(.) =i/, I (o) k- . ,(.)- , (3)

0 and "Join" the solutions in two neighboring seotois with the aid of

Relation (1):
?/k,(Ake - Bka) = , (4)

.is + #k*-+. -2# (Ake,, - Skit)- .

Here

C'4-COO jsdfJ; s=siai.[zdO;
"it P (5)

= 1,

The first equation in (4) expresses the equality of the r&413. or'

vertical components of the particle momentum at the end of the c-th

and the beginning of the k + 1-st sectors. The radial or vertical no-

mentum is in our case equal to HX, apart from constants, so that the

right and left halves of (4) contain the value of the magnetic field

at the instant when the particle leaves the Ic-th sector and at the In-

stant when the particle enters the k + 1-st sector.

Equations (4) and (2) are the exact equations of the investigated

problem, and should be solved simultaneously. However, the systems (4)

and (2) can actually be solved if we assume that the variations of

A(9); B(G); K(G); H(G), etc. are slow compared with the variation of

the angle 9. Let us integrate in this approximation the equation (2)

with respect to 9 from 0 to v. In integrating between these limits, we

can assume that A and B, which are contained in the right half of (2),

do not depend on 0 within the confines of a single sector. As a result

we obtain

0
,k+.__.i- ++ + ,..1#1,, (6)

0
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where

d in (H%)

Substitution of (6) in (4) yields the first difference equation of the

problem under consideration:

AI•- ks,, + I-.'i;. + [+,-B,+,,] -

A(8)

A, ( •+ 2pc) + Il (c - 2p) = (1 -/,.) Lt.+ - "Z" [A,+,e+ U,,+,] +

In order to be able to apply the averaging method to (8), we must

separate in Ak and Bk the rapidly oscillating part, similar to what In

done for differential equations. Therefore in place of the actual varl-

ables Ak and Bk, we introduce the complex variable Dk, which turns

into a constant when fik = 0 and gk 0:

-k tz " k- D-'-" (9)

B, -dDke'!• +.di.D; '. ,

d&= ýP(10)d,-'-I"' •'.•(O

~Co ! OSAk.,. C -Ps.
-I|

It is easy to verify that if Dk and dk are regarded as constant,

then (9) is a solution of the corresponding homogeneous equation (8)

when the parameters are constant. According to (9), we obtain

B, = I)~.e.t'"kI -'- ",..-i.•- -j-' 1i• •Ac4) e"'•ai C - C. •

8ubstituting (11) In (8), we obtain two linear equations with respect

to the two unknowns AD and AD* :

SADad-+ = (,r.'kt, +* c. •' .,.d12
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d.D'.&+~,);~~kI ~Ic ~c. .) i~ os d~,(12)

where 11 and T2 are slowly varying functions of the number k. In the

solution of (12) we encounter terms ot the form

kirlte.k2h; wl#-4llt', re t .

Upon averaging they yield zero, and consequently the average solution

(12) has the form
If, dA -S Ter

'4-4 ' (13)

where
11'.¢/ -- Il" +-'Vd-'I-'-

D,.1Adf, ..~ ,,< ',1] - *. (
+ -4 (If ,d 1 hk) -+ (14)

'(14
•,=• "' g,,...•,,, -..--.-d;g,+, •-O ,,,,,. (

2 01 (15)

If we regard Adk and Ik as small quantities, the squares and prod-

ucts of which can be neglected, then Eq. (13) assumes the following

final form:
14+1l (1 + h- . •t \

-D I -iliilti

" s& 1-V si a ,= .n. (16)

Equation (16) is fundamental to our theory. Its derivation is

somewhat cumbersome because we are taking into account the changes in

the system parameters, with an aim toward obtaining later the law gov-

erning the variation of the amplitude of the free oscillations in an

accelerator with a slotted magnet. In the investigation of the passage

through resonance, one can generally speaking disregard the variations

of the parameters, since the resonance plays usually an important role

for a short time interval. In this case Eq. (16) simplifies to
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Ip

,- p. **(17)

Equations (16) and (17) are a generalization of the abbreviate4 -0 0
equations of averaglx theory to include the case of difference eqam-

tions.

S3. Adiabatic Variation of the Amplitude of Free Oscillations

In order to solve Eq. (16) it in fist necessary to solve the *or-

responding homogeneous equation. A solution of this last problem Is

simultaneously equivalent to a determination of the adiabatic varLa-

S~0=0

Fig. 31. Dependence of the
function f(KO) on c for three
values of 6 a.n for the pira=-
eters of the proton synchro-
tron of the USSR Academy of
sciences (AA - 2/7).

tion of the amplitude of the oscillations in accelerators with slotted

magnets. Solving (16), we obtain in first approximation (in t1k and
Adk),

U1 Ad,- pI- + it, .

Replacing summation by Integration, we obtain
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' !•nD , e
L,.J C .(19)

The square of the oscillation amplitude at the azimuth o Is determined

from Formula (11, 22):

r .- .'Y!M O 1,-.,:,- ('J, -- 3) " '~ Jh : - .. . . .. .. .-- , ,,( o

where f(a) is defined in (11, 42). It is seen'from Formula (20) that

if K is constant, then the law governing the variation or the ampli-

tudes of the free oscillations in an accelerator with slotted magnet

coincides with the law governing the variation in a circular accelera-

tor. However, if c changes, as is usually the case on going through

resonance, then certain singularities appear, present only in an ac-

celerator with slotted magnet: first, the change in the oscillation

amplitude is different in different azimuths; second, the rate of at-

tenuation itself changes.

_'(W)

OI I

'4.

Fig. 32. Dependence ofi the
function f(KO) on ic for three
values of 9 and for •/= 1.
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Figures 31 and 32 show the function f(ac) for three different az.i

muths: * - 0 (edge of the seotor), 0 - irA (middle of the seoto'), and

* - wf/8 (intermediate points), and for two values of I/ namely 8/T

(the proton synchrotron of the USSR Academy of Sciences) and 4. We

fcm these figures that when i increases the amplitude at the center

attenuates more slowly, and on the edge it attenuates more rapidly,

~than in a circular accelerator.

!. From Formuula (19) we can determine the change In the phase of th6

Thus, the change in the phase of the oscillations in logarithmiek

i.e., rather slow. For example, in the proton synchrotron of the USeR

Academy of Sciences, the phase of the oscillations changes by approxi-

mately 300 during the entire acceleration time.

S4. Resonance when n = 0.84

In the lO-Bev proton synchrotron when n - 6.84 the frequency of

revolution and the frequency of the vertical oscillations coincide and

cos g - 0. The value of cos g in the vicinity of n - 0.84 can be found

from Formula (III, 32). The value of the index n, at which resonance

tales place, can be calculated from the following approximate formula,

which usually gives an accurate result:

I is = I- 2Jlb -t- 4,+. .... (21)

where b = /7rR. Formula (21) is a solution of the equation

- 6 J' - eT

which is expanded in powers of b.

The magnetic field index n in the main part of the chamber Is, of

course, chosen to be much smaller than 0.84 and on the average its
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value is 0.66. According to the technical specification, at the in-

stant of injection from a working region measuring 160 cm, n lies in

approximately 140 cm between 0.55 and 0.75. It is desirable, however,

to use the entire working region of the magnetic field, up to n - 1.

In addition to the trivial desire for making full use of the magnet

gap, this is connected with two other factors: first, when n - 1 the

orbit is compressed more rapidly, which can increase the injection ef-

ficiency; second, when the particle beam is extracted from the accel-

erator chamber, it is necessary to use the region n - 1, in order to

increase the pitch of the unwinding spiral along which the particle

moves. It is therefore important that we be able to calculate the

single or multiple passage of the particles through the resonant re-

gion.

The resonance at n = 0.84 will occur if a vertical force acts

with the period of particle revolution. Such a force, in particular,

is the distortion of the central magnetic plane of the magnet, con-

sidered in §3 of the preceding chapter. Such a force is also the ver-

tical component of the electric field of the injection plates (injec-

tor). In short, any local constant force having a vertical component

due to the rotation of the particle, acts on the particle with the

period of revolution. When n = 0.84 there is also parametric resonance

in the case when the index n depends on the azimuth. The principal

role will then be played by the second harmonic of the variation of n.

Let us investigate first the resonance phenomenon in the case of

a parallel shift of the magnetic planes of the individual sectors.

This corresponds to the first case considered in §3 of the preceding

chapter which, apparently, corresponds most accurately to the actual

situation in the proton synchrotron of thd USSR Academy of Sciences.

After substituting (III, 12) into (15), we obtain
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"c( - c) +d; (22)

gk- v
We average Ik in the following fashion:

+1= -

The quantity Vk,=----j -(k+-l)] changes little during the course of

the resonance, and upon averaging it can be regarded constant, Just

like 'k+l. The quantity (Azk+le 2 ) is a periodic function of k

with period 4. It is therefore sufficient to average it over one period,

changing k from 0 to 3. As a result we obtain

= '' - -(, • , ' . - i ( .• : ,- A z , .6 ( 2 3 )
4

Let us use Eq. (17), i.e., let us disregard the change in the os-

cillation amplitude due to the change in the parameters during the

time of passage through resonance. In this case

&

+ 11"'P(241)

We replace the summation in (24) by integration and take the re-

sultant integral by the method of steepest descent at the point of ex-

act resonance. As a result we obtain the value of Dk after passage

through resonance in the form:

! "7" (As. ) + i (as,- as,)) ,.% (25)

It is clear from (25) that the addition to-Do has a maximum when

Azk. AZk+2 < 0, i.e., if the alternation of the signa of the shifts of

the central planes occurs every other sector. Here (and henceforth) wv

shalZ C-a"2ulate t-..e resu.tan- a-•:-_:ue o .ta.-.e" after passage through

resonance. Of course, it is easy to calculate with the aid of the

Fresnel integrals the entire process whereby the oscillation amplitude
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builds up (see Figs. 33 and 34). The value of the square of the ampli-

tude Dk-D* depends essentially on the relation between the phases of

the initial and final oscillations. If we average over all the phases,

we obtain

(26)

where

Ia+ -(8 +C

, .(27)

An is the change in n during one complete revolution of the particle.

According to (II, 22), the amplitude of the oscillations 4c is

Let ub consider one example. Let

If An = 0.01, then the amplitude of the vertical oscillations Fc ex-

ceeds a by almost 60 times.

In conclusion we note that in order to calculate the passage

through resonance during the instant of injection it is not essential

to replace the sums by integrals, since a numerical calculation by

means of Formula (24) does not entail great difficulty. Indeed, the

number of revolutions during which the resonance is significant is on

the order of 15-25. Figures 33 and 34 show a comparison of numerical

calculation with the method of steepest descent.

Let us consider further the resonance phenomenon for a random de-

viation of the central magnetic plane from the geometrical plane. Let

g1 (e)/K; g 2 (9)"K; g 3 (e)/IK, and g4 (0)/K be the deviations of the cen-

tral magnetic plane in the first, second, etc. sectors of the magnet.

We expand this deviation, as in §3 of the 'receding chapter, in a

Fourier series [see (III, 11)], and investigate the effect of the J-th
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Fig. 33. Comparison of numeri-
cal calculations with the cal-
culat ion by the method of
steepest descent: 1) numerical
calculation; 2) calculation by
the method of steepest descent.
A) Number of particle revolu-
tions; B) scale for.

harmonic:

S1 m n + 2A1. , (28)

In calculating car by Formula (15) we must average the following quan-

tities:

an2) c(30)

where

(k +(31)

Let us consider first the exponent in (29). According to (1), Vie

obtain

2) T - T,",.,, (32)
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B I

B I

Fig. 34. Comparison of numeri-
cal calculations with the cal-
culation by the method of
steepest descent (case of
slower variation of the mag-
netic field index n than on
Fig. 33). 1) Numerical calcu-
lation; 2) calculation by the
method of steepest descent. A)
Number of particle revolutions;
B) scale for.

The last two terms in (32) are almost constant (since Pk " /2) and

the first term can, generally speaking, vary rapidly. In this case,

the value of (29) vanishes on averaging. However, if (--w/2 + 7rj/2) is

equal to zero or is a multiple of 2w, then the average value of (29)

will be different from zero. This latter case occurs when

J = 4 q + 1,

where q = 0, 1, 2, 3, 4, etc.

An analogous analysis of Expression (30) leads to the conclusion

that it does not vanish on averaging if

J = 4 q - 1,

where q = 1, 2, 3, 4, etc.

Thus, in our case all the odd harmonics of the shift of the mag-

netic plane resonate. We have carried out the derivation for an accel-

erator with four linear sections. Obviously, if we have not four but N
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sections, the following numbered harmonics will resonate:

J -Mq+ 1. (33)

For example, in a circular accelerator only the first harmonic reso-

nates, while in an accelerator with four linear sections all odd har-

monics resonate, and in an accelerator with six linear sections the

resonating harmonics are numbers 1, 5, 7, 11, 13, etc. This phenomenon

is very simple to explain. The eigenfunctions of the oscillation equa-

tions are harmonic, and when the eigenfunction of the lowest period Is

expanded in a Fourier series, we obtain harmonic components of the In-

dicated period.

Thus, we should consider the action of all the odd harmonics. It

must be borne in mind here that if J is contained in the exponent (28)

with a plus sign, we consider the harmonics numbered 1, 5, 9, 13, 17,

etc., while if J has a minus sign, we consider the harmonics numbered

3, 7, 11, 15, 19, etc. It is therefore sufficient to consider only one

of the expressions contained in (28):

7, 2 i .i (,i,,v,, + d; co J (34)S( )

U 0

We replace the summation in (34) by integration, since the into-

grand changes very little after a change by unity. Carrying out the

calculations indicated in (34), we obtain

Dt = D, + 0~E. J .'l'dk,
" (35)

II.

where i0 is the phase of *k at the resonance point.
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If all the harmonics are present, we should sum their action. As

a result we obtain

',I DP.- (36)

It Ia easy to calculate the sum contained In (36). 18seed

1•[(9,--,)--i(,-8-H,)[sinr ,GEý- cog -"*Idb" (37)

Inasmuch as (1 + c)/s is equal to the value of d*k at resonance (see

(10)], we can regard (sin ce + d*k cos 0e] as the solution of the com-

plex-oonjugate homogeneous difference equation for the resonant ic. In

spite of the apparent simplicity of the right half of (37) compared

with the left half, it is more convenient to use the left half, for.

there are ready-made methods for expansion in a Fourier series (tem-

plates, analyzers, etc.), and the series converges rapidly. For the

sawe reasons, for example, one does not use in practice the "simple"

expression (I1, 2) for the distorted orbit in the central plane, It

being preferable to expand (III, 2) in a Fourier series.

We note that the right half of (37) can of course be obtained also

directly (without resorting to the Fourier series) in the calculation

of !r by means of Formula (15), as we did in the derivation of Formula

(23). For this purpose it is necessary to use the following relation,

obtained in analogy with (23):

*-%+. ,"37* l(S--t,)-- i I,-- g,)l.

In the cases of practical interest, the series (36) converges well and

usually its first term exceeds appreciably all the others.

Expression (36) can be simplified by assuming IA to be a small
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quantity
Dare d •'t t + 1 |It 3 b) Z'01.1 .+•

+b-h (38)

It is seen from (37) that the action of the first harmonic is

(1 - 3b/2)/(3b/4) - 12.5 times stronger than that of the third harmonlo,

and 22.5 times stronger than that of the fifth harmonic, etc.

As is seen from (38), the magnitude of the resonance Is greatly

influenced by the value of an. Apparently it will be on the order of

0.01-0.02.

So far we have carried out the calculations using the simplified

equation (17) in place of Eq. (16). It is easy to get rid of this U1n-

itation. The solution of the homogeneous equation (16) in given in S3.

Applying to this solution the method of varying the constant, we easily

obtain the desired solution. Let Fk be the solution of the homogeneous

equation (see (19)], then

=(39)

In sumning (39) we use the method of steepest descent. Consequently,

D. F= a, (40)

where Fko+l is the value of Fk at the saddle point ko, while Di k In

the solution obtained above. In other words, past the saddle point,

the amplitude Dk vardes in accordance with the usual rules considered

above in S3. Parametric resonance at n - 0. 84 can be analyzed by the

method developed in the next section.

J. Parametric Resonance at n = 0.79

When n = 0.79, a well-known resonance between the first harmonio

of the azimuthal asymmetry and the radial oscillations is produced in
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the proton synchrotron of the USSR Academy ot Sciences. In this reso-

r anoe, the frequency of the radial oscillations (8) is equal to half

the revolution frequency 2w, i.e.,

#I=0,?8+0.5b-O-,O + 1,70-.... . (41)

The effect of this resonance is proportional to the product of

the small deviations from the theoretical field and from the equillb-

rium orbit. This resonance is therefore referred to as a second-order

resonance.

Assie that the vertical components of the magnetic field can be

represented in the following form [see (InI, 14)]:
H, (r. 0)-- 11, (r) I I + hl (r. (1)],

where H0 does not depend on the azimuth 8 and on the number of the sec-

tor k, while hk(r, e) is small and yields zero when averaged over k

and 0: LO(r.) =0 . We then must write in lieu of (III, 1)

•, (Us) + H.( - ,,4 =,) p =-J, (It, fi);

H= IR;-. ; , (6) = f,. (ji + h,,) -- Iwit _ -- 11k = #I. n, (,). (2

The customarily employed quantity nk(e) is small compared with the con-

stant quantity no.

The influence of the term -Hohk(R, e) on the motion of the par-

ticles was already investigated in the preceding section.

The teri -nk(G)p usually does not play an essential role. But it

n - 0.79, then this term, which is small in magnitude, resonates in

the lO-Bev proton synchrotron with the frequency of the radial osoilla-

tions and in some cases may cause a noticeable increase or decrease in

the oscillation amplitude.

Let us expand nk(e) in a Fourier series
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(43),

The sign in front of the#phase a Is plus If is positive an minus

if . is negative. We use Eq. (17). It contains the quantity V1 [iee

Fomula (15) ]:

I+ (, (,Sl. A + i, an Atdi +

+n't+1 (0) (sn A + dl* em %4)8 =i
,(44)

where nk(G) is the value of n'(O) - n0 In the k-th sector, and x-

- ,/ -no (we recall that e changes frou 0 to 7r/2). In averaging (44)

we shall assume that j--=-2 Y+' +(k+1) is a slow function of _k. Equa-

tion (17) assumes the form:
! +1,, (t D6 =•,) T2D;+,,,+,,. (45)

The values of rll and 12 are readily determined from (44):

' - --(ni +N + n.. - 1 (46)

V.01 - nj- i (s- - n,.)(•a.it A, -4- d; cufA)" A,

where nlr, n2, n3 , and ni in the value of ;(8) in the first, seoond,

etc. sectors. From the expansion (43) we readily obtain

(n 1+ ns+,a+A 5)=4 V ava(4jj+ a,)

Thus, the quantity T2 is connected with the odd harmonlos of nk(#)*

while the quantity T. depends on the values or the harmonics that m

multiples of four.

Let us first investigate the effect of the oscillations of the • )

term #1 on the amplitude. We note that Its action is not connected with
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the existence of the resonance under comsidez,'ation, and does not 4e-

o• pend directly on no. Calculation by mans of •o •iulas (46) and (47)

yields (when ao - 0)

vivo(4&8)

In this case the solution (45) is equal to

&= " • (49)

Inasmuch as 11 is a real quantity, the amplitude of Dk remains con-

stant. The phase of Dk changes monotonically. Thus, T1 can be regarde

as a correction to the frequency of the free oscillations, brought

about by the azimuthal variation of the magnetic field index.
Substituting (47) in (46), let us calculate T2 for the resonant

value n0 . The derivations will be carried out for all the terms, ex-

cept the one corresponding to the first harmonic, with accuracy to p 2

The influence of the first harmonic will be determined accurate to 2.

After cumbersome but straightforward calculations we obtain

a *± O V +, t 2 % .2 - Pl=- 3 -4 IM. -+$,• (50)

As indicated in the preceding chapter, an appreciable fraction of

the azimuthal asymmetry is brought about by the difference between the

levels of the magnetic field in the sectors of the magnet. Using the

notation introduced there (see Fig. 27) we write, in accord with (42)

and (47):

n& (o)= (n,- 2)/, =(- 2) 4I;

2% 14-_ 1" "A ' -%Bi ala alo,: (51)

P(I

Let us proceed to a study of the resonance and let us put !l - 0.
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We shall henceforth be interested principally in the change of

the amplitude of the free oscillations. We therefore writo the equa-

tion for IDCI, define by the formula:

3h place of (45) we obtain (acourate to the first pomwr of &yk)

the two equations:
ID iI--IDaI:aIVIID,,ilc '•-2;+ ;(52)

I- Vs I i (Do.- 2 yt + Q;s52

whe" #2 is the phase of Y2 .

We first integrate the first equation in (52):

1

1" Doe! WI ak

211 - + q%. (53)

The integral contained in (53) can be taken by the method of

steepest descent, assuming the phase Tk to be constant. Indeed, the

saddle points for the two equations will be the same. Consequently,

A'2 k is equal to zero at the saddle point. Therefore

u, = +; + +; = - 2p' + +%.

The prime denotes here differentiation with respect to k. We can

neglect the quantity *"2' since it is of the next (higher) order of

smallness compared with p'. The position of the saddle point is deter-

mined from the condition

''- 2A + •, = - (z -( ) - 2T, + 0.

The shift of the saddle point from the resonance point 21 - 7r/2 - 0

is usually not very considerable, and we shall neglect it henceforth.

This introduces, of course, an uncertainty in our calculations. For

the cases of practical interest, however, the initial amplitude of the

oscillations in the proton synchrotron of the USSR Academy of Sciences

is sufficiently large compared with the additional amplitude due to the
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r'esonanoe. We can therefore solve sq. (146) in praotice rather simply

o by successive approximations, taking as the sero-th approximation the

LAtial 'value of Zk. At any rate, Vhe method wh.ch we are usin yields

perfectly satisfactory results for our case. In additlon, as we have

already noteds it is not dflfieult to cawry out a numrloal suatiofn

of (46) which, as shown by experiment, consumes only a few hours per

trajectory.

After passing through resonance, the Integral in (53) is equal to

S

I,&h yi~E+2zb !bt] b=-

where u 0 is the value of the phase u at the saddle point and an is the

change in no during one revolution of the particle.

As can be seen from (50) and (51), the correction introduced by

the linear sections will not play an appreciable role, if the first

harmonic is not one order of magnitude smaller than the third, fifth,

etc. harmonics. A more important circumstance is that the presence of

the linear sections shifts the resonant value of no.

As it executes radial-phase oscillations, the particle may pass

through the resonant region many times, and the point of maxlimum devia.

tion of the frequency can lie in the resonant region. In this latter

case Expression (54) is not valid, for l' = 0 at the point of maximuam

deviation. Courant [44] proposed to use as the stationary phase the

phase at this point (which we designate by the number 2 to distinguish

it from point 1, where resonance takes place).

We shall essentially follow Courant from now on, with one excep-

tion: in place of the Bessel function we shall use the Airy functions

- (50]. This enables us to simplify noticeabrly the final formulas and

combine three cumbersome expressions into a single simple one.
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At the point 2 the derivative is u" Z 2' - 0. Therefore

*.sU.+5,(h-,)+ j-' +" ** (55)

where v(x) is the Airy function (in the notation of V.A. Pk C501);

0 u(1+b)AWQ 1,04A

whero AB Is the distance from the point at which no - 0.79 to the

point of maximum deviation of the particle which executes radial-phase

oscillations with amplitude A and with frequency

PT T ,0 •(57)

It can be shown that at sufficiently lage AB Formula (55) Voes over

into (54) with accuracy to within the difference --
16. Significance of Resonances of Fast Oscillations to the Ovmezation

or the Accelerator

The role and the significance of the resonance at n - 0.79 is es-

sentially different from the role and significance of the resonance at

n - 0.84.

Let us consider two stages of accelerator operation: the Injection

process and the acceleration process. The resonance at no - o.84 is

harmful and dangerous only during the period of injection, for during

the time of acceleration the radial oscillations rapidly decrease and

move the particle away from the resonant region.

The resonance at n - 0.79 is not dangerous during the time of in.

jection. To the contrary, in some cases it may prove useful. Indeed,

as can be seen from (53), (54), and (55), depending on the value of

the phase the amplitudes of the oscillations can both increase and de-

crease. The particles in which the amplitude decreases can become of- )
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fectively captured in the acceleration mode. Barden (51] considered a

siia case of l.•eatlon !.n the betatron. He ass=ed the index n to

be Independent of the radius and close to its resonant value. His vari-

able was the azimuthal asymmetry.* However, Barden's case is far from

reality In either the betatron or in particular in the heavy-pSZ'tiole

accelerator. Apparently, our case is of great significance for all

types of cyclic accelerators, when the injection is from a region where

n is close to unity. The influence of the investigated resonance on

the injection in a betatron was considered in detail in a paper by

A.B. 0aznetsov (52].

Let us apply our formulas to the 10-Bev proton synchrotron of the

USSR Academy of Sciences. Let &n = 0.02; h 1 - h3 = h0 ; h 2 h- - -h 0 .

Then Eq. (53) assumes with the aid of (54) the following form

14=1) 0C'".M . (58)

Since in this case h. does not exceed 0.003, the increase during

the time of passage :hrcough resonance is not more than 5% of Dk. Thib

quantity is on the order of the pitch of the turning orbit during the

time of injection. At the start of acceleration the amplitude of •6

radial oscillations attenuates over the period of the phase oscilla-

tions by tha same amount. Thus, if An = 0.02 or more, the resonance

under consideration hardly influences the injection process.

The resonance plays an entirely different role during the accel-

eration period. If the amplitude of the radial-phase oscillations is

so large that the instantaneous orbit falls into the resonant region,

then oscillations can build up gradually owing to the multiple passage

through resonance. In order for such a buildup not to occur, it is

necessary that the amplitude of the oscillations be attenuated by the

increase in the magnetic field during thd period of the phase oscilla-

tions more than it increases as a result of resonance.
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Let us consider an example. Let AB - 0; eVO - 6 bey; W, - 10 NYvj

R(n 100; A) o - 0.02. Then

I D,= ^-.M%.. (59) 4)
The exponents turn out to be approximately twice as large as in (57).

This' is understandable, for in our example the radial velocity ohanges

direction at the resonance point. The orbit of the particle is there-

fore in the resonance region for a relatively long time. However, if

AB -- z0.001, i.e., AB Z- 3 cm, then the exponent in (58) decreases by

16 times. Thus, the resonance at no = 0.79 is quite peaked. Of course,

the sharpness of the resonance (and to a smaller degree its magnitude)

depends on the value of R(&y'mR).

We see from the foregoing analysis that in the proton synchrotron

of the USSR Academy of Sciences free radial oscillations of the par-

ticles can actually build up if the amplitude of the radial-phase os-

cillations is sufficiently large. But if the resonant value no is suf-

ficiently close to the edge of the magnet pole, then it is always pos-

sible to make the percentage of the lost particles negligibly small.

Indeed, as shown in Chapter 5, during the accelerating mode the par-

ticles captured are essentially those with small amplitudes of the

radial-phase oscillations. Moreover, we shall show that the optimal

injection mode occurs at V0 = 4-6 key, when the radial-phase oscilla-

tions occupy only one half the region between the average orbit and

the injector. Therefore if the resonant value no is located at a large

distance, the effect under consideration will not play any role.

During the time of acceleration it is expected that the pole

piece will become saturated and the points no - 0.79 and no - 0.84

will shift into the magnet. However, the attenuation of the radial-

phase oscillations is much faster.

Thus, by taking suitable measures, it is possible to avoid the in-
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fluenee of these harmful resonances.

The influence of other possible resonances in the higher orders

*an be considered in analogous fashion. However, an analysis of all

ShCW3t!A1 -In:hs -e•io frc= ::ý, :o :.7-- there is

no danger of resonances. Oonsequently, the technioal specifications of

the magnet stipulate specially that no lie within these limits in an

appreciable portion of the working region (140 out of 160 cm).

The correctness of our statement is confirmed also by the success-

"ul operation of betatrons and synchrotrons with n ranging from 0.6 to

1.75.

§7. Different Cases of Resonance with Slow Phase Oscillations

Resonances with slow phase oscillations are usually not considered

in accelerator theory for the following reasons: a) the frequency of

the phase oscillations is hundreds and thousands of times smaller than

the frequency of revolution and the frequency of the fast free oscil-

lations; b) the frequency of the phase oscillations changes suffi-

ciently strongly during the acceleration process; c) the frequency of

the phase oscillations is usually much larger than the cosmercial fre-

quencies (the frequency of the magnetic field, etc.).

We shall now show that item "c" does not hold true in the proton

synchrotron of the USSR Academy of Sciences. Indeed, owing to the

large dimensions of the installation, all the frequencies, and partic-

ularly the cyclic frequency of the phase oscillations, are considerably

reduced.

Figure 10 shows the variation of the frequency of the phase os-

cillations f. = W1/27r during the time of acceleration for a voltage

V0 - 8000 volts and a multiplicity q = 1.

The frequency f 1 changes from -2000 to -700 cps. If multiple res-

onance is used, then the frequency f 1 is increased by a factor W.
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The increase in V0 also increases the frequency of the phase osoilla-

tiotu approximately as 4fV0. The frequency fI is considerably influ-

eueed by the value or the index n (in the relativistic case f -

- i/(*i?- n), and In the nonrelativistic case

The magnet windings are fed from a 12-phase rectifier. Conse-

quently, the magnetic field will contain a certain component with n=R-

inal frequency 600 aps, and also harmonics with frequencies 1200, 1800,

2400 ops, eto.

An estimate and the experience with the 180-Mev proton synohro-

tron have shown that the amplitude of these components is quite small

(on the order of several hundredths of a gauss). But if the frequency

of the phase oscillations is equal at some instant to one of the fre-

quencies indicated above, then harmonic field components of small amp-

litude can play a considerable role.

The magnetic field can be written in the form

where Q = 2•r 600 radlan/sec, and H0 a slowly varying function of the

time.

Let us consider several possible cases.

1. The frequency of the accelerating field does not follow the

h1gh-frequency oscillations of the magnetic field. In the right half

of the phase equation there appears an oscillating term, which we now

calculate. If our magnetic field exceeds the theoretical value by hH,

then the particle energy increases, for a specified revolution fre-

quency, by an amount

7 -(61)



Substituting the value of AE in the first equation of (1, 17), we

obtain

*oil I - a Mr.(62)

aa
dAffC ++)

Here and henceforth we neglect the terms of the form EmH; d0O6i,

etc., assuming them to be negligibly small.

2. Frequency of accelerating field changes so that the radius of

the equilibrium orbit remains constant. In order to obtain the oscil-

lating time in this case, it is sufficient to separate the oscillating

part in the expression for cos q0* For this purpose, we substitute

(61) in (1, 23) and obtain

M,= (-)- -. (63)

In addition to the cases considered above, other factors can also

lead to resonance. For example, if the supply of the generator of the

accelerating field is from a rectifier, then the amplitude may oscil-

late for the same reasons as the magnetic field:

The frequency control system may also cause the frequency of the

accelerating field to oscillate:

, - - cin(j/2 -'- ). (65)
A-I

We are considering a discrete spectrum only. (It is not difficult

to consider also a continuous spectrum.) Let us calculate the coeffi-

cients N.

3. Amplitude oscillations. By direct substitution of (64) into
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the phase equation we obtain:

4. Frequency oscillations. If an amount AW is added to the fre-

quenoy, then j increases by 6w - . Therefore the additional term in

the phase equation is

4- --; c,2•+,). (67)

S8. Calculation of the Passage Through Resonance in the Linear' ApImo.-Imatio'n

We male the following change of variables in the phase equation:

(68)

and assume that t0 is a constant or slowly varying function of the

time, while the deviation a is a small alternating quantity, the square

of which can be neglected. As a result we obtain

d0

where
"=k"

and the quantities Aj will have their own values for each of the four

cases considered in S7. For example, in case (1) (see (62)] we have

4 h t.- .i w -i-.,- T)r",;" (70)

In cases (2), (3), and (4):

Aj = (I--a)' h,.; (71)

2u) coq,4,j; AM=-mv~jcLI'.

Let us assume that at the instant t the frequency of the phase
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oscillations is w= - f = Jo, then only the .- th term will be

of signifioance in the entire sum in the right half of Eq. (69). We

can therefore neglect all the other terms of the sum. The solution of

the cozresponding homogeneous equation (68) is known:

"V+ C, f

The particular solution of the complete equation (68) is deter-

mined by the well-known method of varying the constant. The increasing

part of this solution is

) -(72)

where

The amplitude value of a after passage through resonance can be

determined, as usual, by the method of steepest descent, and the char-

acteor of the increase in the amplitude can be determined with the aid

of the lresnel integrals. As a result of simple calculations we obtain

r-A (73)

Substituting in (73) the values of A from (70) and (71) we ob-

tain an expression for Urax in the cases under consideration. Before

we discuss the obtained result and give numerical examples, we call

attention to two circumstances. First, if the frequency 0 is not con-

stant, then Formula (73) will contain, obviously, in place of the quan-

tity I(cIl the quantity 1w, - oI; second, the use of Formula (73) is

permissible if %ax resulting from the numerical calculation is smaller

than unity.

In the 10-Bev proton synchrotron w., is a small quantity when 1 -

1, and when • 0 the frequency w1 is practically constant. Therefore
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even very small harmonic components of the magnetic field and of the

frequency may exert during the time of resonance a very strong influ.

enee on the amplitude oZ the phase oscillations.

Let us give two numerical examples.

1. The resonances with frequency 600 and 1800 cps can be ellm-

inated, if necessary, by varying V0 during the time of operation of

the machine. Therefore, let us consider resonance with frequency 1200

cps. The value of I depends essentially on the magnetic field index 11

and on the value of eVO. This dependence is particularly strong, es-

pecially at low energies (up to 1 Bev):

ft -2a. 00W

for wI = 2n.1200; n = 2/3; V0 = 6000 v; H = 4000 oersted. Substituting

the values obtained in (73) we get

a "' 1 • 1 , I "• _ i ( 7 4 )

where h 2 is in oersted. Thus, a value of h 2 on the order of 0.01 oer-

sted can result in large phase oscillations. In this case h 2 is only

0.00025% of H, but h 2 "JO amounts to about 2% of dH/dt.

From the foregoing example it is clear that even when h2 - 0.01

oersted it is necessary to take into account the nonlinearity of the

phase equation.

2. Six-phase rectification in the generator supply. system leads

to oscillations of VO; the amplitude of this oscillation Is 0.3% and

the frequency is 300 cps. Higher harmonics of the fundamental fre-

quency also appear. The amplitude a~ax is in the worst case (&I )

= 27.600; "al 27T.100)

If bj amounts to 0.5%, then %ax 0 0.5.

3. Let us consider the oscillations of the frequency of the ac-
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celerating field. In this case

If a - 1, then C = as 15 - 50 ops.

Thus, small perturbations at resonant frequency can cause suffi-

ciently large phase oscillations, which again leads to the need for

taking into account the nonlinearity of the problem, which turns out

to be quite appreciable.

69. Calculation of Passage Through Resonance with Account of the Non-
linea�t�y of the Oscillations

We are not in position at present to solve the nonlinear problem

completely. However, the existing methods, and primarily the averaging

method, enable us to solve the problem by assuming the nonlinearity to

be small. This essentially makes the results of the preceding section

more accurate, since the rate of passage through resonance is small

and therefore even a small nonlinearity changes the results appreciably.

Indeed, in the linear approximation, when GI -" 0, the amplitude of the

forced oscillations tends to infinity for all values of A3 [as can be

seen from (73)]. At the same time, when the nonlinearity is small and

the values of Aj small, the amplitude of the phase oscillations remains

finite in the case of interest to us even when 1 0.

The physical reason for this phenomenon has been explained long

ago [53]. When the amplitude of the phase oscillations increases, the

frequency of the oscillations decreases, so that the particle goes out

of resonance.

In the proton synchrotron of the USSR Academy of Sciences the fre-

quency wI of the small phase oscillations decreases very slowly during

the course of acceleration. However, during the passage through the

resonance the amplitude of the phase oscillations increases, which

rapidly brings the system out of resonance. N.M. Krylov and N.N. Bogol-
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yubov [53 ] called such systems actively nonlinear, to distinguish thor

from passively nonlinear systems, which do not limit the amplitude in

the absence or damping. #

We shall show that the direction of passage through resonance is

very important here. If the time and amplitude dependence of the fre-

quency of the phase oscillations act in one direction (i.e.,

(&j/dt)(&j/ =) > 0), then the nonlinearity itself assumes the

role of "effective friction." This is precisely the case during the

entire time of acceleration in accelerators. The account of the small

nonlinearity enables us to obtain not only a qualitative but also a

quantitative result. This method, however, does not enable us to con-

sider the passage of the particle through the separatrix on the phase

plane. The latter question can be treated only qualitatively.

For the calculation we used the work of Yu.A. Mitropol'skly (34],

who developed and mathematically Justified the use of the averaging

method for systems with slowly varying coefficients.

We introduce in the phase equation (62) the dimensionless time

"fudS , (75)

where il is the frequency of the small phase oscillations (see (69)),

and carry out expansion in powers of a (see (68)]. As a result we ob-

tain

a+ a=------( e--?tj"1- Dai" ) +[tc2g•.- "- -,' (76)

where a is a smallness parameter, which in the final answer must be

set equal to unity, while the prime denotes differentiation with re-

spect to T and

d In ion Aj2x dr, i*
D Vos=uy =V , ; (77)

t = F, + £I,,.
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Let us estimate the dimensionless quantities contained in (77),

for the parameters used in (74):

=0.7 -104; D = Wan"" V-41 a
•O7- --,a" (78)
|-- 0,7. -0r4.

where h 3 is expressed in oersteds. Thus, D Is on the order of several

hundredths or less.

We seek the solution of (76) in the form [34]:

a a=O +,-1((-; a; + )1 s

(79).
X= ,; , )+,,+...; - I-1+,b1 (; a; O)+,b,+ ...

Substituting (79) in (76) we obtain the equations in the first

and second approximation for uI and u2 . The left halves of these equa-
tions will contain expressions u"1 + uI or u"i + u From the right

1 2 2*
half it is necessary to eliminate the terms with cos y and sin Y in

order that the solution contain no secular terms. Equating the coef-

ficients of cos y and sin y to zero, we obtain the equations for the

determination of al, a2 , bl, and b2 .

In place of the procedure indicated above, which is well known in

oscillation theory [53], we can multiply the initial equation (76)

first by cos y and then by sin y, and integrate within the limits from

0 to 2n with account of (79).

Both methods yield the following first-approximation equation

-ý &~ D(80)

(I - Q) a' + 2a, = -D cos .j.

Solving (80), we obtain

D Cll b =-'+ si
. -c1 1 16 (81

-- 1-- cor2' ctg y.-- - cos 3 -.

We analogously find the second-approximation equation
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Des si n Dcoos +| A •SO as

242 1O 1 +a 1 W (82)

I

Solving the equations in.(82), we obtain 4
D sin d! dl._DaScos ,•{1 - 1)

a.= "•r •- e, +u.•3 •)(83)
hum Do" +, A +_Daxl,•(5--32) 52 . -

8(1+ 1~ r tG(I + t?,(s -3 -'B ctr e o-- To +

Finally, the sought equation has the form

a ~ am -2 Cot2't
ds CoAM Q,(-t _&a , D sin• di

1-i +
+ (-I+T-.&_1" 00+40•-I•)j "1+ d

We first find the stationary solution, equating the right halves

of (84) to zero. Eliminating *, we find the algebraic equations re-

lating a with 9. Figures 35-37 show the results of the numerical solu-

tion of this equation. In the interval of the values of a, D, 6, and

dt/d¶ of interest to us, the terms containing a4 , 6, and dt/di do not

play any role (as shown by numerical analysis), nor do the second

terms in the square brackets of (84). Therefore, for an analytical In-

vestigation it is sufficient to use the simplified third-degree alge-

braic equation (although the numerical calculation can be carried out

also with the complete equation):

, -. c3i-,@ - 1+ D) (85)

where the minus sign corresponds to the stationary phase at +W - ./2

and the plits sign to the stationary phase * -- 7r/2.

Equation (85) will have three different real roots, if

16(1- 1,(1 + , <- 6,75. (86)
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If the inequality sign is replaced in (86) by an equal sign, we obtain

the condition for the existence of one multiple and one simple real

root. If Inequality (86) is not satisfied, then only one real root ex.

ists.

Poe' what follows we need to )mow the value of the multiple and

simple roots when the inequality sign in (86) is replaced by the equal

a sign:

~~~I~a I I"* ai I4*.)~ II= 219.01. (87)

2 •,V Formula (87) has been derived accurate

Sto 1%.

The investigation of the stability

4 of the stationary solution leads to the

Fig. 35. Stationary reso- following results. The upper branch of
nance curves. The depend-
ence of the amplitude of the curve, corresponding to the station-
the phase oscillations a
on the ratio t of the - ary phase - = +ir/2, is stable. Of the
frequency of the external
action to the frequency two lower branches, corresponding to the
of the small phase oscil-
lations for D = 0.02 and stationary phase --w/2, one is stable andcas (p0 = 0. 1) Upper
stable branch; 2) upper the other not. The boundary betweenustable branch; 2) uowr
unstable branch; 3),lower these regions is a = akr [see (87)].
stable branch.

Inasmuch as the quantity • =

increases in the proton synchrotron of the USSR Academy of Sciences,

the representative point moves over the lowest left curve up to the

stability region akr (see Figs. 35-37). At this point the amplitude

increases rapidly (it approximately doubles), and then decreases. We

note that the maximum amplitude will occur at t < 1, i.e., resonance

sets in before the frequencies of the small phase and forcing oscilla-

tions are equalized.

Inasmuch as the frequency of the small phase oscillations in the
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Fig. 36. The same an in F~ig. 37. The same an in
Fig. 35, but for D-m 0.02 Fig. 35, but for D - 0.1
and coo %0 -f 0.5.• and coo To - 0. 5.

proton synchrotron of the USSR Academy of Sciences changes very slowly,

the true resonance curve will be close to the stationary curve. Unfor-

tunately, knowledge of the resonance curve is still not sufficient to

judge the motion of the particles with different initial conditions.

Only after a very strong perturbation, following the passage through

resonance, are the amplitudes of the oscillations of almost all par-

ticles equalized. It must be borne in mind that on going over to the

unstable branch, damped oscillations with amplitude -akv are produced

on the stable branch about the new equilibrium position. The amplitude

of the oscillations is on the order of one half or two thirds of the

distance between the stability limit and the upper stable branch of

the curve. The exact form of the curve can be obtained only an a re-

sult of numerical integration of (84) for D - 0.04 and 6 = 0.0001.

The initial conditions were chosen in such a manner, as to make

the amplitude of the oscillations equal to zero away from resonance.

Thus, the continuous curve shown in Fig. 38 is the true resonance

curve. The dashed curve Is obtained for the case when the amplitude of

the phase oscillations away from resonance is -0.2.

We note that were the represented points to be located on the up-

per curve, then the amplitude would not increase in resonance, but
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would decrease monotonically. Such a case can occur for sufficiently

large oscillation amplitudes. However, in order for it actually to be

realized, it is necessary that the phase of the initial oscillations

be equal to +7r/2.

The maximui amplitude in the stationary case is equal to

[see (87)]. In our case the maximum amplitude is somewhat larger (by

25-3C%). This is seen in Fig. 38, obtained as a result of numerical

integration of (84). We express 2ak, in terms of the amplitude n

calculated in the preceding section, in order to show the extent to

which an account of the nonlinearity changes the final result. With

the aid of (73), (77), and (87), we obtain:

3 T_, 3.2 , .M6 (88)

Let us consider an example corresponding to (74) and ctg vo -0.

2al, - o.55(,,n))1/3. Thus, whereas in the linear theory " ) - 1,

in the nonlinear theory 2akr = 0.55. If (lin) = 2, then 2&kW M 0.69.

We see that the amplitude of the nonlinear oscillations changes within

narrower limits.

Thus, the final theoretical formulas for the four cases considere

in the end of 17 are:

2) 2 . . 3,2 l et. . ( 89)

+ AVeain J (90)

4) 2p 3.2

0 . .
( 9 2 )

Thus, an examination of the nonlinear case enables us to relax

greatly the requirements concerning the size of the field J)armonios,

- 157 -



a

'I,

fi iI

40.

Fig. 38. Dynamic resonance curve
obtained from numerical calcula-
tions (D - 0.04; cos To = 0.5;
6 = 10"-). The dashed curve shows
the change in the amplitude of
the oscillations at initial amp-
litude anach = 0.2: 1) upper

stable branch; 2) unstable
branch; 3) lower stable branch.

the frequency of the accelerating field, etc. The major accomplishment

of the theory is the possibility of obtaining analytic formulas for

the nonlinear oscillations.

Manu-
script [Footnotes]
Page

No.

119 This was also pointed out in the paper of Blachuan and
Courant (38].

143 In Barden's calculations, the azimuthal asymmetry was as- r )
sumed constant. Its variability was taken into consideration
in the discussion of the results.
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script [List of Transliterated Symbols]
o Page

No.

125 cp s sr = sredniy - average

148 *0 of o e tktivuw m e ffeateLive

149 Hati -nach - nachal'nyy - initial

153 JIMH - lin - lineynyy - linear

155 KP a kr - kriticheskiy critical

155 np - pr - promezhutok - section
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Chapter 5

INJECTION THEORY

J1. Introduction

The effectiveness of the injection method determines the Intensity

of the beam of accelerated particles, since the main particle losses

occur during the injection. At the same time, a theoretical analysis

of this problem is exceedingly difficult. It is sufficient to state

that in spite of the numerous attempts we still have no satisfactory

injection theory for the electron accelerators, betatrons, and synchro-

trons with betatron triggering. This is connected with the fact that

in betatrons and synchrotrons the injection efficiency is determined

by the interaction of the particles with one another. In addition, an

important role is played by the space charge, secondary-electron emis-

sion, etc. From among the large number of particles, only an Insig-

nificant fraction enters the acceleration mode. However, the short

lifetime of the main mass of the "lost particles" exerts a serious in-

fluence on the entire injection process.

The picture is entirely different in the lO-Bev proton synchro-

tron. The large volume of the chamber, the insignificant inlet proton

current (500 microamperes), and the good collimation of the beam en-

able us to neglect the particle interaction and to stay within the

framework of the one-body problem. Indeed, the Coulomb charge would

start to play some significant role only if the proton current would

increase by 10,000 times compared with the indicated value.

Thus, we have to solve the problem of the motion of a large num-
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ber of particles in a specified magnetic control field and electric

accelerating field.

Among the aggregate of initial conditions, we must find those

that ensure resonant acceleration without collision with the injector

and with the chamber walls.

The proton beam emerging from the injector will be assumed speci-

fied. An important independent problem is to calculate the motion of

the particles from the injector-accelerator, which is 10-12 meters

away from the chamber. This problem was solved by A.A. Kolomenskly [261,

and will not be discussed here.

Different variants of injection were developed by the author in

1949-1950. We present here only the final variant, chosen to trigger

the 180- and lO,000-Mev installations.

Let us describe the injection method briefly. The particles are

introduced from the linear accelerator with the aid of lenses, a turn-

ing magnet, and an electrostatic deflector (Fig. 39) into the working

region of the magnet, where the magnetic field index is n < 1.

During the first stage of the injection the accelerating electric

field is turned off. The instantaneous particle orbit is gradually

pushed from the injector toward the central orbit. The radius of the

instantaneous orbit is determined by the energy wi of the injected par-

ticles and by the magnetic field H(R, t):

ell (1)

Inasmuch as the injection energy Is constant, R varies in proportion

to 1/H(R, t). The change AR in the radius of the orbit during the time

T of one particle revolution is

where Hi, Hi are the magnetic field and its partial derivative with
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respect to time at the instant of injection. At an injection enery 4

Mev we have T - 7.5 Isec, Hi - 104 oersted, Hi = 4000 oersted/soo, n -

- 2/3, and AR - 2.4 cam. The value of AR varies in inverse proportion

to the injection energy. For example, at a 10-3ev energy AR - 1 on.

Fig. 39. Diagram for the injection of
the particles into the accelerator: 1)
linear accelerator; 2) shield; 3) dual
magnetic corrector; 4) adjusting capac-
itor; 5) turning magnet; 6) sector; 7)
chamber; 8) inflector.

At the present time, for several reasons connected essentially

with the possibility of obtaining the theoretical magnetic field dur-

ing the instant of injection, the chosen value of energy is wi - 10

Yev. The contraction of the orbit during one revolution can be regu-

lated between 1 and 3 cm by short-duration forcing of the rate of change

of the magnetic field.*

If we denote by p1 the distance from the injector to the central

orbit, then the first injection stage (without the accelerating ele-

tric field) continues for a time ri, where

9 (3)

We shall henceforth call the quantity r the injection time. When wi -

-10 Mev, p, - 50 cm, and AR = I cm, the injection time is -i = 240 gsee.
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After the inst~antaneous orbit has reached the position of the

central orbit, the second injection stage begins: the admission of the

particles into the accelerator chamber is stopped and the accelerating

electric f!el- !as :nrned on. We shall assrne that the second injection

stage continues for one period of the phase oscillations (about 500

esec).

The particles which did not collide during the first injection

stage with either the wall or the injector will be called the par-

ticles "captured" during the first stage. The capture of the particles

during the first stage depends on the angle of departure of the par-

ticles from the ejector, y, the rate of constriction of the orbit, the

value of pi' the injector dimensions, the structure of the beam of in-

jected particles, etc.

The particles captured during the first injection stage as a re-

sult of the constriction of the instantaneous orbit. Indeed, it can be

readily shown that the effect of damping of the oscillations, which is

proportional to H-1/2, is negligibly small compared with the constric-

tion of the orbit (approximately 50 times smaller).

The particle leaving the injector executes free radial and ver-

tical oscillations about the instantaneous orbit, and the amplitude of

the radial oscillations is always larger than or equal to the distance

from the point of departure to the instantaneous orbit. The particle

does not collide with the injector (with a probability close to unity)

if after three to six revolutions the instantaneous orbit is displaced

by an amount larger than the difference between the oscillation ampli-

tude and the shortest distance from the injector to the instantaneous

orbit, measured at the instant of departure of the particle from the

K injector.

In order for the particle not to collide with the chamber walls,
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the amplitudes of the radial and vertical oscillations should be

smaller; than the distance from the orbit to the corresponding wall

(for more accurate determinations see the next section).

At the second injection stage (called also the transient mode),

slow radial-phase oscillations are added to the free oscillations.

This raises again the question of collisions between the particles and

the injector. It is obvious that the sum of the free and phase oscilla-

tions should be less than the distance from the equil'brium orbits to

the injector. Moreover, for resonant acceleration in the proton syn-

chrotron mode, the initial phase of the particle ('nach) and the phase

velocity (9nach) should satisfy certain conditions (see (i, 58)].

If the current from the injector is equal to I, then during the

injection time T. the number of protons entering the chamber is IrI/e.

The number of particles captured during the first stage is Q"

- Irt ±PTiz/e, where np is the probability that the particle will bypass

the injector and the vertical walls of the chamber, and i. is the

probability that the particle will bypass the horizontal walls of the

chamber. q1 = ip z is the capture coefficient of the particles during

the first stage of injection. In the second stage, some fraction Q-

"-QIr of the Q1 particles will be captured, where Ts2 ' the coeffi-

cient of the transient mode. The product of both coefficients will be

called the injection efficiency. Thus, the efficiency of the injection

is equal to the ratio of the captured particles during the injection

time to the number of particles admitted into the chamber:

I='Q .(4)

Along with the quantity Y1 we shall use the number of effective

revolutions of the particles:
e, ,Q,•

S13 -(5)
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The quantity rIT is equal to the ratio of the number of particles

which do not strike the injector to the number of particles emitted

during one period of revolution.

S2. Fundamental Assumptions Made During the Calculations

We are faced with the problem of oaloulating the injection offt-

ciency, by solving the dynamic problem of the motion of many particles.

The efficiency turns out to be quite sensitive to certain parameters

of the installation (in particular, to

the magnetic field index n). In practice,

.Vi V, however, it is impossible to obtain a

Si 42 definite value of n specified with high

accuracy. In designing such a tremendous
Pig. 4&0. Percentage of
particles not striking installation as the proton synchrotron
the injector after the
first six revolutions, of the USSR Academy of Sciences, we are
for different values of
the index n. The injec- unable to connect the injection method
tion energy is Wi = 4 Nev,
the distance from the in- with the attainment of some high acu-
jector to the central or- racy in the value of n. In the fundamen-
bit is Pi = 50 cm, and

the maximum angle of de- tal part of the working region of the
flection of the par-
ticles from the optimal chamber, n will be within the limits
direction is Ymax = +0.20.

The dot denotes the the- from 0.6 to 0.7.
oretical value obtainedfrometheal vappru e fbard For practical purposes it is quitefrom the approximate for-
mula. 1) Theore tical
point; 2) numeoreo va - essential to determine the dependence ofpoint; 2) number of revo-

lutions. the injection efficiency on the main

parameters of the magnet: 1) the size of the magnet gap; 2) the devia-

tion of the magnetic fields from the theoretical value; 3) the charac-

teristics of the injector, namely a) the energy of the injected par-

ticles, b) the angular and energy scatter of the particles, and o) the

geometry and location of the injector; 4)' the characteristics of the

high-frequency accelerating device, namely a) the effective accelerat-
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ing voltage, b) the multiplicity, i.e., the ratio of the generator fre-

quenoy to the particle revolution frequency; 5) the rate of change of

the magnetic field (the forcing); 6) injection methods. f)
It turns out that the dependence of q on the foregoing character-

istics can be determined with a high degree of adcuracy. At the sam:

time, the absolute value of the injection efficiency T1 needs to be

known with an uncertainty amounting to a factor of 1.5-2. It is desir-

able further that the error result rather in an underestimate of 11

than in an overestimate.

Starting from the foregoing, we have made the following assump-

tions: 1) the damping of the free oscillations during the injection

time and the damping of the radial-phase oscillations during the phase-

oscillation time can be neglected; 2) the particle beam admitted Into

the chamber is homogeneous in density and in angular spread at any

point; 3) the principal losses occur during the third and sixth revo-

lutions after the particle leaves the injector. Were the injection to

occur in a constant magnetic field, then 50% of the particles would be

lost during the third revolution and the remaining 50% during the

sixth revolution.

The first assumption, as indicated above, is easily justified: an

account of the attenuation results in a correction amounting to 1-2%.

The second assumption is not a principal one. Were we to have experi-

mental data, they could readily be used. Preliminary experiments indi-

cate that the deviations from homogeneity in the beam will not be

large.

The most essential is the third assumption. In the installation

of the USSR Academy of Sciences, the particles execute during the

first injection stage only 20-50 revolutions, so that it is not diffi-

cult to determine by numerical calculation the particle loss due to
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Fig. 41. The same as in Fig. 42. The same as in
Fig. 40, but for WI = 10 Fig. 40, but for W- 10

Nev and Vmax = +0.1 . 1) Nev. 1) Theoretical point;
Theoretical point; 2) 2) number of revolutions.
number of revolutions.

collisions with the injector. Such calculations were actually carried

out in the paper of A.I. Zaboyev [55]. The injection efficiency Is a

sharply oscillating function of n with many gaps. During the injection

period, when the eddy currents and the remanent magnetization pay an

important role, it is impossible to maintain n constant with a high

degree of accuracy. Consequently, the rapid oscillations have no phys-

ical meaning.

However, it is possible to obtain with the indicated degree of

accuracy analytical formulas which make it possible to choose correctly

the accelerator parameters.

Let us consider the following imagin"ry experiment. Let n - 0.66 +

+ 0.06 and the magnetic field be constant, and let protons be admitted
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into the accelerator chamber. Then, as shown by numerical oaloulati&ii,

no particles are lost at all during the first revolution, from 0 to 90%

are lost during the iecond revolution, and from 30 to 600 on the third

revolution. After six revolutions the main bulk of the particles, up

to 90%, will be lost, and the main losses occur during the fifth and

sixth revolutions, while practically no particles are lost during the

fourth revolution.

This picture can be made rougher. In the first approximation we

can assume that all 100% of the particles are lost during the third

revolution. The second more accurate approximation is the statement

that 50% of the particles are lost during the third revolution and 50%

during the sixth. If now the magnetic field is varied in time, then

some of the particles will avoid collisions with the injector, and

furthermore, if we assume our approximate assumption, then the losses

will be produced only during the third and sixth revolutions.

Getting ahead of ourselves, we present the results of the numer-

ical calculations in Pigs. 40, 41, and 42. The ordinates in these fig-

ures are th.e ;ercen:a.es cf :ne ;a--:!es :ha: dc .-.o: collide with the

inijector after several revolutions, the number of which is laid off on

the abscissa axis. The same figures show also the percentage of par.

ticles not colliding with the injector, calculated on the basis of the

third assumption (the "theoretical point").

From these and many other calculations it is seen that our method

gives a sufficient degree of accuracy in all the cases of interest to

us.

13. Capture of Particles During the First Injection Stu*e

In the first part of the calculation we shall take into account

only collision with the injector and vertical walls of the chamber and

calculate the value of p. We then introduce a correction •l' taking )
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into account the particle los1 due to the collisions with tM hWJ$#V-

tal walls of the chamber.

Assume that a particle beam with radial dimension 24 $# a&W$•4

into the chamber of the accelerator. The beam subtends an wz ý

The beam axis makes an angle a with the optimal Giw•eOt0A,

The angle of particle emission, relative to the optSUW. 4$40I$OO

will be denoted by y. We introduce also symbols for the w •m W*

minimum angles:
TaT•" i+8 ; •|:•lI

These and other symbols are explained in Fig. 43.

In place of the angle y, which is measured in radians, It $4 a"..

venient to introduce an angle a, expressed in terms of other 4mnraOM-

less units:

where the value of f is given in Fig. 21, while pi sn the 4istanoe

from the injector to the central orbit (see Fig. 43). We shall d4Mto

the angle a with the same indices as the angle #:

The amplitude of the radial oscillations is, in accord with (=, 41)

(7)

where u - Po/pi; y - x/pi; Pc - oscillation aiplitude/pi. (8)

The meaning of pox is clear from Fig. 43.

The oscillation amplitude Fc exceeds the distance ftrQ the $Jq..

tor to the orbit by an amount

A FU+,)+a.-. (9)

We assume that the collision with the injector occurs at the

third and sixth revolutions. Consequently, in order to ar*Ateet SI
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Fig. 4~3. Notation scheme used In the
calculation or the injection erri-
ciency. The hatching denotes the
chamber wall, the wavy line the re-
gion between the injector plates,
the dashed line the optimum beam di-
rection, and the solid line the ac-
tual direction of the beam axis. 1)
Instantaneous orbit; II) average or-

bit; 0) origin or x coordinate.

absence or particle losses, we must stipulate the fulfillmnt of the

following inequalities:

In order for the particles not to collide with the chamber walls,

we satisfy the condition

if s(f (01)lf( W0] <3 Ai. /Pi3 , all particles which would be lost In the

third revolution as a result of collisions with the injector, aree ac

tually lost during the first and second revolution, owing to collisions

with the chamber walls. We therefore write for the third revolution in

place of (10) and (11)

AP < alo(12)

where a1 is the smaller of the two numbers 3AR/pi and slf()i)/f(xfr/4)].
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Analogously, for the sixth revolution we write

op h< a (13)
Where £2 is the smaller of the two numbers 6aR/pi and s(f(oi)/f(Wr/A)].

As shown in Chapter 3, the deviation of the magnetic field from

the theoretical value Is taken into account In the following manner.

First, the size of the magnet region employed is decreased by the

amount of the azimuthal asymmetry. The quantity p1 which is contained

in our formulas is reduced in proportion to it. Second, the optimal

direction for the emission of the particles is changed.

For examp.e, -In the lC-Bev pro:on synchrotron, the working region

of the magnet will be 160 cm, of which 40 cm drops out as a result of

the azimuthal asymmetry and 10-15 cm is lost because of inaccuracy in

the initial frequency of the accelerating field. The value of s will

be on the order of 10-15 cm. Consequently, the maximum value of p.

does not exceed apparently 50 cm.

1. Parallel particle beam. Let us consider a parallel beam of par-

ticles, emitted at an angle a to the optimal direction. The number of

particles captured during a time dt from the points of the beam with

coordinate x; x + dx is

In place of the time dt we introduce the amount of constriction of the

instantaneous orbit dpo:

d fi 4.

where T is the time of revolution of the particle, and we change over

to the dimensionless variables:

dQ*,=2AdudM, (14)
where

IpNT
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and • - 2. /pi is the dimensionless width of the beam. Let us inte•-ate

(14) under the assumption that a can assume with equal probability the

two values a1 and a 2 , and obtain

Q AJ Jdu dy. (15)

where the integration regions cl and c2 will be determined by the In-

equalities given below. The first two inequalities are obvious

0<Y<D, (16)
Via +M)+'&T.-ae. (17)

The next inequality takes into account the fact that the Instantaneous

orbit is constricted only to the central orbit, and then the aooelerat-

Ing field is turned on. Therefore the oscillation amplitude F. cannot

exceed unity:

Via +v) +£TT 1 (1.8)

B

0 8 *'

'g?~

&me1
4: "X

Fig. 44. Domino of integration (cross hatched) of
the integrals (15) for two cases:

A) o • )' . %a. as; t) VA(. ( )

The lower boundary is in accord with Sq. (17)j the
upper boundary is in accord with Eq. (18); the
right-hand boundary for case A is in accord with
Eq. (16).

Figure 44 showS the domain of integration for two different C 8as.
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It in seen from this figure that the maximum possible value of Z is

determined by the intersection of the boundaries of domains (17) aMd

(18), and Is equal to

Y, ;- + .(19)

The actual width of the beam V can be either laSer or mailler thn yi.

We introduce the quantity 'y, which In equal to the smaller of the two

numbersI and y". If we integrate first with respect to u, then the

limits of integration are

0. + 1 4 ig(20)

After simple integration we obtain

QA [(V -hI:a.+ -Lu+ JuLi I] (21)

Lat us consider two particular eases. Let the beam width-0 be

larger than Yi" Then

I [,+.L
+e, 44-•=] (22)

or approximately

-- - in ( 2 3 )

where i is the base of the natural logarithms. From (22) we can readiW.

obtain the maximum permissible angle a. C2gi. It depends on the value

of ai:

a-,)(24&)

In order for the number of captured particles to be large, It Is

necessary to have
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Let us consider a second particular case. Let the width of the

beam be smaller than yt. This case Is realized if
,,< c,-,=, (26)

Where

(27)

It 1 then necessary to substitute V in Eq. (21) in place of

+-~ ~ + i fV +4n &1] (28).

The quantity r¥, introduced in 52, can be readily obtained from

(22) and (28):

Jp'•= (29)

2. Beam with angular scatter. In order to find the number of p•e'-

ticles captured during the first injection stage, it Is sufficient to

multiply (21) by da./2c% and integrate from the minimum to the mazi-

mum angle (-.2; +a,). Since only the square of the angle is contained

in all the formulas we get

Q. d. o(30)

(we leave out the indices of e and a). Each integral in (30) breaks up

into two parts: when a < Z±- " l" I (2 - !i) it is necessary to use Xx-

pression (28) for Q"u' and if a > Zgi Expression (22) should be used.

If the angle ok is larger than the maximum permissible angle a1

(24), then the integiation must be carried out to 0 gi" If the angle 0 k

is smaller than 0gis the integration is carried out to the angle uk.

Taking into account the foregoing remarks, the integration Is

quite simple to carry out. To write down the final result In the most

concise fashion, we introduce a function of the two independent vari-

ables: )
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.*(iii I II I . . ... .........

.°<, .,. , -. r.- ..,u.-(31

whezre

Let us investigate the behavior of the function 0. It a. > a on

uum~i{.(2-e(1+.3 +)ns 4.) roa =a2-,,) (32)

4u~aj

p Co t7 €• t?4 gi efI V# efI.7

Fig. 45. Plot of the function O(a, c)
in accord with Formula (31) for the
calculation of the number of particles
captured during the first injection
stage.

When a (< 1 we have approximately

The difference between the two values of the functions is

n 7(34)K: - 174+



We can now write down an expression for the number of p•rtioles J
captured durian the first stage, in general form:

10"(-4; 4) - • ,,(3.

Plots of the function O(a, a) for different values of a awe shown

in Pig. 45, where the absoissas are the values of a.

Lot us consider several particular caes.

1. Assume that we have a broad beam with large angular scatter.

Then forO -> a1 (a2 +a,) we have

_

I-• I .. (t +=.) M3T

when a. << 1.

Prom (37) it follows that the Intensity increases In proportion

to pi/2; (•R)1/2, and (N)3/2, where N is a parameter of the theory

(the number of "effective revolutions" without colliding with the In.

Jector). Since the width of the beam and the angular scatter are large,

the Intensity is inversely proportional to the angle subtended 2%,

and to the beam width M.

2. Irtthe width of the beam is 1 < a1 (ok > .,ai(2-- then

2 ___Vr _r_-(a c_._,~,_ • r'"-•, '•"'(1 + 53 4) + •(,-• (38)

3. In the limittas --*0 we obtain

4 (39)

The Intensity increases In this case as
p-/2; (-X)-/2 ad N./2

4. Let us consider the case of small angles but a broad beam:
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where a is the minioun value of the angle a. in this case

Approximately we have (for a. << 1; Gi << 1)

5. When the angle subtended and the width of the beam ae smiall,

then

T T2d 9 9(42)

when

and

SLI

+ _ _+ 1.3,Il_,] (43)

2 30]

when

a < V2, (--d •,)

We have considered all the particular cases encountered in prac-

tice, with the exception of the so-called "mixed" cases, i.e., we as-

sumed that both angles al and a2 satisfy identical conditions for both

values of ai. The method of writing down the expression for or

in the mixed cases is obvious: one of the terms in the double sem

C. • should be replaced by a corresponding terlt from the sums (37)-(43). To

save space we shall not write out these expressions, all the more since
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Formula (35) covers all the possible cases. The application of the 'A-

tained relations to the proton synchrotron of the USSR Academy of 'S1=

onoes will be given below. )
3 Calculation of the corrections for collisions with the hat.,

sontal walls of the chamber. Inasmuch as the angles in the radial j(y)

and vertical (Q) directions ma small, we can consider motion in UeP

two directions independently.

We denote the beam dimension in the vertical direction by 2X, the

angle subtended by the beam by 2L,, the vertical working dimension of

the chamber by 2Dz, and the displacement of the beam axis f•rm a di-

rection parallel to the central magnetic plane by eZ. The amplitude of

the oscillations has a maximum at the center of the sector and is

equal to

/,-TUT•- '-

where f 5(av/2) and fr(ai) is the value of the function f at the center

of the sector and at the point of the injector (see Fig. 21) for the

vertical oscillations (z is the coordinate of the particle emitted

from the injector). The optimal angle C0 is small and ranges between 0

and 11, so that it can be henceforth neglected.

We introduce the notation

"o "

Then the amplitude of the oscillations can be expressed more simply as

B (145)
In order to prevent collisions with the chamber walls, we must have

S.or. o (46)
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where a Is the maximum permissible angle. For different points ofZ8
o the Injector (av), this angle assumes different values.

The probability of not colliding with the chamber walla Is obvi-

ously

+-b Ott d

where as and-az are the maximum and minimum vertical angles, ez-

pWeased In the units defined in (44).

Let us consider three oases.

Case 1. Iat the angles of emission of the particle be sufficiently

large, i.e., Ia.1 > Dz; az2 1 > Dz, and asI > 0. In this case the do-

main of integration in (47), on the plane (as; zv), is a circle of

radius Dz, truncated by two symmetrical chords: z -Xv and zv -- x1 .

Calculating the area of this figure

2#z=2[k,VDZ7=!,+Doarstea (418)

we obtain

"(149)

where the upper sign is for a0, 012 > 0 and the lower one for as

Os < 0.

Case 2. Let the angles of emission be small, i.e.,

1'lD!="<IsI<D, and 'V•f<z.l<(K<D. (ai,>O).

In this case two segments are cut off from the integration domairr con-

sidered in the preceding case by two parallel chords az -tz and a. -

Let us introduce the coordinates z.- VfD-% ad?2- -

for which the maximum permissible angle is, respectively, a and a

Then #
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where the upper and lower signs are written for the cases a > 0 anda2

a2 < 0* respectively.

*2W

Fig. 46. Percentage of par-
tlcles colliding with the hor-
izontal walls of the chamber,
as a function of the deviation
e z of the beam axis from the
angular half width tn (2Xv
= 12.5 cm; 2Dz = 25 cm) .

Case 3. Let the emission angles be even smaller, Le.,

N<
4..-.<

and
I,12<q. K • ,., >o.

The integration domain degenerates into a rectangle

Fi"6.ee tae o(53p)

Mixed tases. In analogy with the preceding, we an write downh

the mixed cases. For example, if

then

+.• (52)

ze

We see that Formula (52) r onsists of the firt part of (49) and

the second part of (51). To facilitate the calculation if the .,
oases, we have purposely broken down the expression in the ndmeratow s

then9
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of (49) and (51) into two parts, the first of which corresponds to the

angle aU1 and the other to the angle a.2.

A plot of r. for different values of a and as is shown In ng. 46.
4. Application to the USSR Acadsm of Sclences proton hnhbat o1 .

Figu•es 14740 show four groups of curves of % for different vSlus of

the parameters of the 10,000-Hev installation of the USS AoadmW of

Sciences.

If the beam has a sufficiently large angle scatter, then it is

easy to obtain satisfactory intensity even when the error upon injec-

tion is large.

In the case of a parallel or nearly parallel beam and a very small

value of the error e, the value of rT is of course even larger. How-

ever, for any appreciable value of e the intensity Immediately tends

to zero. For example, when pi = 30 cm, dK/dt = 4000 oersted/sea, and

a- 0.20 we obtain for an almost parallel beam 0 0. A parallel beam

with error 6 = 0.150 yields the same intensity as a beam with a larger

angular divergence (ymax - 10) with error e = 0.80.

A certain improvement is obtained for a parallel beam with erro-

neous injection direction by forcing the derivative of the magnetic

field. For example, for dH/dt = 12,000 oersted/see, a parallel beam,

and an error e = 0.30 the intensity still remains different from sero.

From this we draw two conclusions.

1. In order to adjust the apparatus it is necessary to use a beam

with large angle scatter. Generally speaking, owing to the negligible

aperture of the inlet unit, the beam will be almost parallel. One of

the possible ways of increasing the beam entrance angle is to apply to

one of the pair of plates used for the admission of the particles an

(jj alternating voltage with frequency large? than the particle revolution

frequency. It is obvious that the obtained beam with varying dirge-
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Fig. 47. Number of effective
revolutions N as a function
of the deviation e of the beam
axis from the optimal direc-
tion and of the angular half
widthymax of the beam (the
angles are given In degrees).
The injection energy is W1 -
- 10 Nyv, the distance from
the injector to the central
orbit is pt = 50 am, the beam
width is 5 cm, and the change
in the magnetic field is
dH/dt - 4000 oersted/see.

tion is equivalent to a beam with large angular spread.

2. To adjust the machine it may be useful to force the derivative

of the magnetic field, although if the apparatus is In stable operation

andM the injection Is at oorrect angles, this forcing will not be neoes-

saey. Forcing Is also useful if the Injector increases the Intensity

while decreasing the injection time.

Thus, in spite of the fact that the value of % (the constriction
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Fig. 48. The same as in F1%. 47, but
for dH/dt - 10,000 oersted/sec.

but. 49.Th same as in Pig.
47, but for pi 30 cm and
dH/dt = 12,000 oersted/sec.

of the orbit) is large compared with 6R for medium scale accelerators,

the problem of particle capture in a 10,000-Yev installation encounters

a difficulty of its own. A 7-9' deviation of the angle of particle

emission from the specified direction causes the particle to strmke

the injector.

Attention must be called also to another unfavorable cirocustance.

During the first stage of the injection, the capture is most effective

if the deviation of the instantaneous orbit from the injector is large.
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Therefore most particles which do not collide with the injector have a

large amplitude of free oscillations and will be poorly captured in

the second stage of the injection (see the next section). ( )

'..

Tm

Fig. 50. The same as in Fig. 47
but for P. = 30 cm.

The most convenient would be powerful but brief injection with a

favorable position of the instantaneous orbit, using a forced value of

d/dt.

On examining the plots in Figs. 47-50 we can maim the unequivocoal

conclusion that the overwhelming majority of particles will be cap-

tured during the first stage. For this purpose it is necessary to sta-

bilize the direction of the particle admitted into the chamber with an

accuracy of several minutes, which apparently is feasible.

S4. Distribution of the Particles amonr the Oscillation Amplitudes
after the First ]nlectlon Stage

In the present section we consider the auxiliary problem of the

distribution of the particles among the oscillation amplitudes after

the first stage of injection. As will be shown below, this greatly

facilitates the calculation of the second stage of injection. As In

the preceding section, we consider first a parallel beam. )
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1. Parallel Particle beam. In order to find the distribution of

the particles among the oscillation amplitudes, it Is necessary to In-
troduce the mplitude Po in the integral (15) in place of one of the

var•ibles (a or Z) and integrate with respect to the second variable.

Fox example s

du ,_(53)

where the sign of.the root coincides with the sign of (u + y),
I

*.-A (54)
€i.| * 1

The integration domain c'1 is plotted on the (y, F) plane for different

cases (Fig. 51). Let ai > a., and

4, <, < al -,,.-•. +,-.•;•'

Q~~[ 7 '2 dy+ dy +

d,+ ,Jy . (55)

where

•'+,:l (56)
Ir 24d

44= B•--0.

From this we obtain immediately the distribution of the particles

among the oscillation amplitudes:
a,- <o<y,; &.<ad.

2F_(4, -) �"henB< < F.<P;

• • ,. -. P,, --4i ..
Qd.AdF.' ~* + F.we.~P<; (57)

,. when r<F•< 1.
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Are,. IT.

L.J .U g , a"

Fig. 51. Integration dmains (cross hatched) of the In-
tegrals (55) o•or different cases:

A) 02,1. %<449 B) AWA. •>q;0< -. , .

Integration in carried out twice over the domain 1.

Expwession (57) remains valid also when V > Yl and a. > ai (for

arbitrary U), if the following rules are employed: 1) i F"O > 1 it Is

necessary to assune F"c - 1; 2) if any expression in (57) beoms nega-

tive, it should be assaued equal to zero.

On the other hand, if ae < a1 and ( < a1 - (a2/ai), then

2f•a-f),h ..<,.<r..a D>a-%;
"",when *.,<?.<F. n 0 <.,--l;

-. F he .-..- J, :d-, 6P.+0-) _- ,.eenr<F.< (. F

The values of P' and F"i are determined In (56).

It follows from,(57) and (58) that as the angle a. deoreases,, the

particle distribution among the oscillation amplitudes for l. »> &a

beoomes more and more unifori. This is particularly olearly seen In

Fig. 52, which shows the probability density Q"V 0/Q"u as a function or
the amplitude F.:

Q(m.w t - f o r•i fo (5 9 )

a -



2. BesM with angle scatter. In order to obtain the distribution

of the particles among the oscillation amplitudes in the presenoo of

an angle scatter of the particles, it Is sufficient to multiplY Pan.-

las (57) and (58) by da4/2%. and integrate over all possible anSles as

tading account of all the Inequalities presnted above.

'Ia

48•

'Iz

f6.

41 4

'go ~ ( (V 4 6 40? go 1.

Fig. 52. Distribution of Fig. 53. Distribution of par-
particles among the oscil- ticles among the oscillation
lation amplitudes for a amplitudes for a broad beam
parallel beam and various with large angle scatter.
errors a. in the direction Curve 1 is in accord with the
of the beam axis, 1 =approximate formula (63),f te bwhile curve 2 is in accord
= 0.1; a2 = 0.3 (the value with the exact formula (62).
Of at for each curve is a1 = 0.1; a 2 = 0.3; Z 2 0.3.

indicated on the right
side).

Assume that we have a beam with a large angle spread. Then we ob-

tain after integration

w0P,, when < F, <C
2j

'I's Fs -- 11. (4d),'when !- < F , <( & (60

where
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,' " whenP >>x.

ZAt us calculate the pr@bability

density

IM~m (62)
L

where QIn given by Formula (35). At ap*

proximately F. >> a& we have (See Fo=m-

44 us (33) and (37)J

_____ ._" '_ '_, ,___=_ (63)
A compar•son or Formulas (62) end

Fig. 54. The same as in
Fig. 63, but for a narrow (63) is shown in rig. 53 for different
beam 0o).

values of a. and for a broad bean. It Is

clear from this figure that the approximate formula (63) represents

well the probability density #(F,) over almost the entire inteal of

variation of Fc.

For a narrow beau, a comparison of Formulas (62) and (63) is shon

in Fig. 54. We again reach the conclusion, which is important for what

follows, that the width of the beam influences only the oscillation

amplitude distribution of order ai.

The form of the function *(F.) is more greatly influenced by the

character of the angular scatter of the beam. We can roughly assu

that all the possible values of the probability density *(Fo) lie be.

tween the two extreme values given in (59) and (63). The only excep-

tion from this rule is the case when the particle beam Is very narrow

but the error in the emission angle in large. Then the distribution is,

roughly speaking, also close to (59), but with F. >> Ms. This case, )
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although it can arise in the adjustment and starting of the machines

is nevertheless an exception in the case of a normally operating as-

chine. It will also be considered below.
15. SgansIgnt Mode with Accurate Swltohlaa on of the Aooelerati&E

ileld ror a Nonoenersetlo artL mi a

During the time of the second injection stage, radial-phase Os-

cillations arise. The particle will not oollide with the Injector dur-

ing the second stage if

P. +4,,<1, (64)

where % PA/Pi' and PA is the amplitude of the radial-phase osoilla-.

tions.

In addition, as shown in Chapter 1, the amplitude of the radial-

phase oscillations is uniquely related with the swing of the phase os-

cillations T2 - V1" Figure 9 shows a plot of the function

(L' 2,,(65)

where 7 is the maximum amplitude of the radial-phase oscillations. Te

connection between 7 and the parameters of the installation is given

in Formula (I, 40).

At first we consider for simplicity accurate turning on of the ac-

celerating field in the absence of an energy spread of the particles.
By definition, in "accurate turning on of the accelerating field" the

frequency of particle revolution equals the frequency of the acoelerat-

ing field, i.e.,

%nach = 0. (66)

The amplitude of the accelerating field is established rapidly

(within 10-15 gsec) compared with the period of the phase oscillations

(-500 ý.sec), and therefore we can assume with good degree of accuracy

that the amplitude is established instantlaneously. In this case, if

Condition (66) is satisfied, the initial phase of the particle 9 moh >
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> (--o) In equal to one of the two maxi values of the phase (qý or

99) asmuoh as (2- 91 )/21r is always smaller than unity,, not a3l it.

the , rticlel will be subjected to protonisynahrotron acoelera•t. :.

if the amplitude Iof the free oscillations, is equal to 1OpL. thsr

the aelituide of the radial-phase oscillations should be less than

p(l - .F). baltlplying the probabilities of these two events and lei.,

tep'St in over all possibble values of Fo we obtain the transiept-mfo

coefficient:

'rnis t.') (, i',=Ja (F,), (F,)d,,,. (67)
a (

where V(Fc) is the probability density of the given value of the ump-

litude Fc after the first Injection stage, determined in the precding

section. An analytic expression for the quantity %2 cannot be obtained

in the general case, if for no other reason than the fact that there

is no analytic expression for the function e. A numerioal Interation

of Formula (67) entails no difficulty.

However, for many important particular cases we obtain an approx-

1mate expression for %2. For this purpose it is necessary to approui-

mate the function a. It is possible, of course, to expand the function

In powers of pA/p, but this series converges poorly. We shall there-

fore seek an approximating function using as guidance the following

principles: the approximation must be quite accurate for small pA'•

and approximate for pArp - I. Indeed, as follows from Inequality (64)

and Formula (67), the particles subjected to proton-synohrotron aooel-

eration are those for which pA'r is small. Figure 55 shows, plots of

the function fte(pA/•) - 'o(PA/p) (dashed) and of the two I'Woximate

functions o0(pA/') (solid lines) for the values of c05 qP0 of praotical

importa.nce:
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M i "y +g s [t + 1 ; (68)

where k = 0.2 and k2 = 0.25. Further caloulations have shown that at

both values of the constant .J we obtain the same exlpession for ri, In

the region of values of v0 of practical interest. In general, the seo-

ond term in the square brackets of (68) gives rise as a rule to only a

small correction.'

"Co to 8~47
4,.

Fig. 55. Comparison of the exact (dashed) and approx-
imate (I and II) curves for the function __ (P
given by Formula (68). Curve I: e0 == 4
- vo ctg vo (a + o.25 a3 ), curve II: so = 4
- vo ctg V0 (a + 0.2 a3 ); for the curve I, k-

0.25 while for curve II, k = 0.2.

1. Let us calculate n2 for the case of uniform distribution of

the amplitudes after the first injection stage. This case corresponds

to a monoenergetic parallel beam. With this simple example we can also

analyze the computation technique. If the beam deviates from the op.

timal direction, then approximately all the amplitudes from a to 1

are represented:

- 190 -



4, 1| -a,

X i-- i- + 0-fo .A,

In the course of Integration It must be borne in mind that If the Owu.

ment or the function e(x) exceeds unity, then a must be regard as

equal to a.. In Iooord with (68):

lie+ ('-r0 - ')] (69)

"when ý < pi.- agpi; here x-./pi.

2. Lit us consider a monoenergetic beam with largo angle diverg.

once. In this case

3, _ . ,,-,] .. (7o)

Integrating, we obtain

p, (I - bt, [,%P
(71)

+r( - (- + I, + tA.- 1s)]1)

when x < 1..

If we assume that we have a distribution

(JPJ 2F.(72)

which ins a poorer repaesentation of reality, we obtain a si•ler ex.

pression:
2 1 4 1i -- ft Cgc l y 1 + 4 t . I f 8 > I .

mT " I TV ] .......

I pFe 0-"Ott('" -2(t-x (73)

X (3-x+Wz))]if x<1I.
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1 I

comparing (71) and (73) on Figs. 56a and 56b, we can verify that the

Q difference does not exceed 15%. We make use of this faot in what fol-

lows.

4Dr42

&I# 71 1 ,.o
paralll bea as afuncton ofwith njecton enray 0 o

q#JI

M1 MA 4W ="W? 1*' W1 5NA 9A7 /iW77
VC,a 1 v*. 03

Fig. 56a. Transient mode coef- Fig. 56b. Same as in.Fig. 56a,
ficient 1j2 for a monoenergetic but for a monoanergetic beam

parallel beam as a function ofý with injection energyr 10 Nov.
the voltage V0. The upper The upper curve is for a par-

t ticle distribution *(F,) -
curve is for accurate injec-= (3/2) lower- for
tion; the lower is for the
case of an error aE = 0.25. *(Fc) = 2FO. i) Exact formula;

The injection energy is Wi 2) approximate formula; 3) v.

= 4 Mev; distance to the cen-
tral orbit is Pi = 50 cm. 1) v.

16. Transient Mode with Error in Turning on the AcceleratiM Field and
for a Nonmonoenergetic Particle Beam

In turning on the accelerating field, an error may arise: either

the accelerating field is not turned on on time, or the beam energy

does not have the correct value. In practice these two factors cause

one and the same result and can therefore be represented theoretically

by one and the same parameter.

C'• Assume that at the instant when the' accelerating field is turned

on the instantaneous orbit is a distance piM away from the central or-
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bit (by definition, oh the central orbit the frequency of revolutioD

l O*qal to the frequenoy of the aool*rating field or Is a mltiple

of the latter). The velUs of X I oonneoted with the "error" In the

-= a-e )' , $1(7~)

or with the "error" In the turniMn-on Instant:

(75)

The phase velocity of the particles at the Instant of turning on

• M L c6
(76)

differs from zero.

The amplitude of the radial-phase oscillations p. depends on the

initial phase 9 ncah and on the Initial phase velocity unaoh (i.0.0 on

pl). tWith the aid of (76) and (M, 38-40) we write

2 [(4) 'A )'M (Billy, Coo lpj_ (all, COS-
-•,v,+,,m-•. '(77)

As can be soon from (77), naoh is a multiple-vLlued functiMo of
(PA/P)2 _ (ip/•) 2 . find for each value (PA2•)- _(.X/r)2 t Val.

h0 and > u0' and set up the functionueT naoh' 'naoh a 2naoh
Ym1 Y, 0.. ,(V _ 1 ~pd'' "(78)23 ='~ (s) -(T))

We call attention to the fact that when ! - 0 the function (78)

goes over Into the function (65), the form of which is known to us.,

Snoe N enters into (77) only as part of the combination [(rp)2-

-(3(~,P)2]' ye get
a(S) M-Sg (S). (79)

Let us call attention to one difference between (65) and (78). In

(78) %2naih 4 'nac- is no longer the swing of the phase oscillations, L)
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when the amplitude of the radial-phase oscillations is equal to PA. In

o this a e2 ah 9c h is equal to the region of Initial p~ aes,
for which the amplitude of the radial-phase oscillations for speoiflOd

X is smller than or equal to PA" It is obvious that It is precisely

this quantity that Interests us InA the Oaloulation of the efficoieno

of the second stage of injection (the transient mode).

The approximate expression for a. has In this case the form [see

(68)],

where
U--LA; x=l; kik0,2 or 0,25.

The maximua value is obtained when PA A • i.e., when uA - -

2( atgy~p - (81)

The coefficient of the transient mode is in this case equal to

During the integration it must be remembered that If (1 - ?d > x

then e1(- e ;max" In Formula (82) we take into account automatically

that when an error arises in the energy or in the instant of turning

on, there will be fewer particles after the first stage than in the

case of accurate turning on. Actually, in (82) we integrate with re-

spect to PC not to unity, but to 1 - M. Thus, we sift out all the par-

titles that are captured after u increases to 1 - N (u S Fc).

Let us calculate the coefficient n2 for a uniform particle dis-

tribution (*(Pc) = 1):

2#v(I -" %Lg-.)" ( L" l, J --"(-z-aj, (83)
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By definition, If > 4 1 - a emust put Inula (8e)rzm-u-%.

We see from 2x•3ssions (83) and (84) that In order for the aoep.

fiOcint 12 to be different from zero It Is necessary that N be salleo

than 3 and mller thanl - as. The cas described by amu(83) Is

realized when an electrostatic generator In used as a saoue. Zndoed,

*n this case we have an almost monoenergetic beam with mall angle

soatter. However, the average energy of the beam in subject to large

slow oscillations. Therefore M 4 0.

If the injector employed Is a linear accelerator, then the ene*w

poatter Is large and In each cycle we have an entire sot of values or

K. In order to obtain the value of n2 It Is necessary to average Por-

mula (83) over all possible values of N:

A

In the case of accurate switching-on and a noMtonoenergstic beat,

Carryin out the averaging in (83) we replace the functionst*l(z),

a,, and 02(x) by their mean values:
AP!_ +x Ea. +-l • •

H,-Mir*

-0 A - MI) +

+!L 7W(-f23z- 22M I +3mmanesin M1

•i 195 *. Jr
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In using Formulas (85), the following should be borne in mind.

Ow symbol ]• denotes that it Is necessary to subtract from the vaQMe

of the expression in the square bracket at N - 11 the value of the

sam exivession at N - NM. If it turns out that X, or N2 are laarr

than j (ar 1- ae), then we must set N In the square braoket equal to
(or 1- ).

lr •2 we obtain a very simple expression in the case of the

large energy spread (i.e., when M2 > x and --Ml > x):

(t C49 TOY-h~P 0 ~1- 2 4A(%= -f X A,++ A."• ~ f ,u-( -) M '&-)- # k ) 1 )1;a°

A. 2,-+ x); (86)
1, whenx, <F,< t

0, whenF,<ao.

By way of another example it would be necessary to analyze the

distribution or the particles among the oscillation amplitudes for a

large aperture angle of the cone of the particle beam, which is propor-

tional to N o with great degree of accuracy. However, the integrals

obtained in this case cannot be evaluated in terms of elementary func.

tions.* We must therefore use the less accurate distribution (72),

which gives an undervalued result for the coefficient T12 (by approxi-

matelY 15%).

In this case

where 0L(x) and 02 (x) are defined in (814). We recall that If x is

greater than unity, we must set x equal to unity in (87).

If the particles are admitted into the chamber with an energy

(• spread, then Expression (87) must be averaged over M. In the simlest

case we have
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4#& +

I~I~3 were determined above In ( M)~An

+ 3-'- cs" + J, (89)

+(_ +,7.* (PO- .- 2WAJ, + U11) +

Formula (88) greatly simplifies In the case of a lUe energ

spread, i.e., when I1l > X:

3hp1*4 2(90)
ff- A(, +)- -- = +

As already mentioned, the results of Formulas (88) and (90) can be

Improved by multiplying them by 1.15.

So far we have based all our argments on the asamption that the

frequency of the accelerating field and the frequency of partlole rev-

olution coincide. If the revolution frequency Is _ time smiler than

the frequency of the accelerating field, then 7 In all the expressio-n

for -i2 and.2 should be taken V ime smaller than for q - 1.

7. ansient Mode Coefficient at InJection Energies 4 or 10 N1v

In the preceding sections we have considered several factors i-.

fluencing the magnitude of the transient mode coefficient %. Amof

these factors were: the amplitude of the voltage v0 on the aoelwat-.

ing gap; the character of the first stage of Injection (fam of the

function *P] the distance from the injetor to the central orbit

pi; the energy scatter of the particles 6wi; the Injection energy wil

and the multiplicity q. )
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'IW

.1 1 I 7 S 1 /0

V, *11

Fig. 57. Transient mode coeffi-
cient as a function of the volt-
age VO and the multiplicity _% at

injection energy W. = 4 Mav with

distance from the injector to
the central plane P. = 50 cm,
energy spread AWi/Wi = 0% and
particle distribution *(F) = 1.
1) kv.

The influence of all the foregoing factors on this quantity can

be traced on the 12 plots presented in the present section. In partio-

ular, the amplitude of the accelerating voltage was varied from 4 to

10 kv. The distance from the injector to the central orbit was chosen

C' equal to 50 and 30 cm. The energy spread Was assumed uniform (values

of AWi/wi were 0%; ±0.5%; ±1%). The multiplicity was varied between I
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Fig. 58. The same as in Fig. 57,
but for W.,= 10 Nv. 1) kv.

Fig. 59. The same as in Fig. 57,
but ror AiW:1 w = ±0.5%. 1) _c-. )
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'Io

I-I

Fig. 60. The same as in Fig. 57,
but fbr W.- 10 Nev and AWI1/W1 -

= ±05* i) kv.

4,-

47 . I 7 5 9 I,

Fig. 61. The same as in Vig. 57,
but for &Wi/Wi - ±1%. 1) kv.
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,ve M

' 6, 1

Fig. 62. The sea as in Fig. 57,
but for W, - 10 Nov and AW,/V1 -

=±l$. 1) Icy.

4 W

IA I I ' 1

4111*

va, * 1

iFig. 63. comparison of the curves
foV q2 at injection energy W1 - 4

vey, multiplicity q - 1, and dis-
tribution *(F) - I for two differ-
ent distances from the injector to
the central orbit, pi " 50 am
(dashed curves) and P1 - 30 am

(solid curves). 1) kv.

20)

- 201 -



and 5. All the numerical calculations were made for two injection en-

• e�ogies, 4 and 10 Noy. The rate of change of the magnetic field inten-

sity was taken at 6.5.103 oersted/sea.

Fig. 64. The same as in Fig.
63, but for injection energy
Wi = 10 14ev.1 v

The character of the injection in the first stage was takcen into

account in the following fashion. The transient mode coefficient de-

pends on the form of the function *(Fc), of the particle distribution

among the oscillation amplitudes after the first stage of the injec-

tion. We can use here arbitrary variants, but at this stage of the ca'I.

culation it is meaningful to consider only the extreme cases: uniform

distribution among the amplitudes (*(Fc) = 1), corresponding to a

parallel beam, and a linear distribution (*(F 0) - 2F.). which repro-

aents approximately a particle beam with 9 large angle spread (2y., >

> 0.50). The true value of the coefficient lie"s somewhere betweent - 202-



these two values, depending on the injection conditions. The oomputii:," -

tional accuracy obtained in this case is sufficient to determine the

intensity of the beam oft accelerated particles and to choose the pavae- |

eters of the installation.

The numerical values which we have chosen for the plots coroes-

pond to the "normal" operation of the installation. For example, we
assume that the error in the angle a and the error in the instant of

e

turning on are sufficiently small. If ae is very large or the turning-

on error is large, then '2 tends rapidly to zero. Thus., we do not pre-

sent here the so-called "adjustment graphs," which we have calculated,

since they do not characterize the intensity that can'be attained in

the lO-Bev proton synchrotron, although one could not get along without

these curves to adjust the machine during its startup.

lqis

I%

/\ d

ihi

Fig. 65. Comparison or the
curves for n2 at Injection en-
ergy W -M4 Mev, pi - 50 om,
multiplicity q.= 1, for two
particle d-s:...utions a.mong
the amplitudes of the free os-
cillations, #(F) - 1 (dashed
curves) and *(F) = 2F (solid
curves ). )kv.
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but for W. 10 Nev. 1) Icy.
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Fig. 67. The same as in Fig. 63,
but for a different distribution
function (*(F) = 2F'). 1) Icy.
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Let us proceed to a specific description of the plots.

1. Parallel particle beam. Figures 57 and 58 show plots of q2 toe

ditterent values of v0 and S with zero energy scatter and a p allel 4)
particle beam. For w, - 4 bev the maxim=m value of q2 in 0.17 at q w 2.

0.23 at q - 3, and 0. 27 at q - 5. At a 10-Mev injection energy these

figures increase to 0.23, 0.30, and 0.34, respectively. The optim l

values of v0 range between 5 and 8 kv for all these cases.

In the case of a uniform energy spread of +0.5$ (Figs. 59 and 60)

the values of the coefficient % differ very little from those given

above. However, if a 0.5% energy drift were to occur in the monoener-

getic beam, the coefficient T12 would decrease by many times. Therefore

particles with deviation of +0.5% from the average energy are poorly

captured in the acceleration mode, and when the deviation from the av-

erage energy exceeds +0.6% they are not captured at all.

Indeed, Figs. 61 and 62 show plots for an energy spread of ±+$.

The maxtimun value of 12 decreases by almost a half. Particles with a

spread within the limits of +0.5% are effectively captured in the as-

celeration mode, while those having a spread between 0.5 and 1$ are

practically not captured. Therefore the coefficient r12 decreases by

approximately one half.

The requirement with regard to the monoenergetic nature of the

beam becomes much more stringent if an error exists in the particle

emission angle a E As a crude approximation, when the energy spread is

large I 2 decreases by a factor (1 - a )/[l - 3ap(L - a,)] (see (86)),

while the effective capture energy range decreases by a factor 2/(1 -

- at). To save space we confine ourselves to these remarks and do not

present the plots.

Figures 63 and 64 show the influence that the distance from the

central orbit to the injector pi exerts on the coefficient 12" The need
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4 4 7 9 1

Fig. 68. The same as in Fig. 64i,
but for a different distribution
function (*(F) - 2F). 1) kv.

for reducing p. can be related, in particular, with the increase in

the azimuthal asymmetry. In this case the coefficient 7 decreases
sharply (by 40-50%) and assumes at 4 Nov values 0.1 (AWi/W1 -+±0..51)

and O.O6 (awl/wi = ±1%). At 10 Nev, 'j 2 is somewhat larger: 0.13 (Awl/Ar -

- ±o.5%) and 0.08 (awi/wi = ±1%).

2. Beam with large angle spread. Figures 64, 65, and 66 show a

comparison of the transient mode coefficients for a parallel beam and

one with large angle spread. In the latter case the value of the ooef-

ficient is approximately 50% smaller. It must be borne in mind, how-

ever, that this value is closer to reality, for in the first case the

error in the angle a can greatly exceed

Figures 67 and 68 show clearly that in the case of a large angle

spread in the beam the value of j2 changes with changing distance from

the injector to the central orbit.

The main results are listed in the table.

Thus, in the worst case when p1 - 30 cm and Awi/wi - 3i the oOef-

SCficient is 7i2 = 0.05 at 10 Nov and - 0!03 at 4 YMv (q - 1).
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Chapter 6

STRONG FOCUSMIG

Sl. Introduction

At the end of 1952, Livingston, Courant, and Snyder proposed a

method for producing powerful focusing in accelerators designed for

the production of protons with energies up to 50-100 Bev. It turned

out later on that similar work was done in 1950 by N. Christoflo0,

but was not published.

As is well known, in ordinary accelerators the focusing force in

the vertical (z) and radial (r) directions varies in inverse propor-

tion to the radius of the magnet

S~(1)

S~(2)

where Hz is the vertical component of the magnetic field, • and-v are

the charge and velocity of the particles, while z and p are the devia-

tions of the particle from the orbit in the vertical and radial direc-

tions. In particular, if the radius of the magnet is increased it be-

comes necessary therefore to increase the linear dimensions of the em-

ployed region of the magnet gap.

The decrease in the focusing forces makes it difficult to obtain

an intense beam of accelerated particles, particularly during the par-

tidle injection and in the initial stage of acceleration.

This can be illustrated by means of the following exaMple. If the

particle is injected into the accelerator chamber not at the correct
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angle, but with an anle error V, then the amplitudes of the radial 1p

and vertical F oscillations Increase by

& VT-~1(3) (

where p1 and s. are the coordinates of the injected particle ezpiesuld

in the variables p and z. It is clear from these formulas that the in-

crease in the oscillation amplitude increases strongly with increasing

radius of the particle orbit. This makes it necessary to increase

either the dimensions of the magnet gap or the accuracy with which the

particles are Injected into the chamber. Both methods are usually em-

ployed.

There exist methods which make It possible to increase the effi-

clency of the focusing forces with the aid of various combinations of

electric and magnetic fields, and thereby decrease the necessary aper-

ture of the magnet gap.

Among the other possibilities, Livingston, Courant, and Snyder

(58) considered the most effective way of increasing the focusing,

that of alternating sectors with opposite slgns of n.

The present calculation was undertaken in order to explain the

shortcomings and advantages of the procedure indicated above for tm-

pr9ving the focusing. We have therefore tried to simplify the problem

as much as possible without attempting to design any particular aoael-

erator, but merely clarify the characteristic features of the phenom-

enon, without obscuring it by extraneous effects.

12, Free Oscillations and Stability Region

Let us assems that we have 2N identical see-brs (see Fig. 69) sub.

tending an angle v. In the odd sectors the magnetic field index is

n1 < 0, while for the even sectors n2 > 0. Let us asswAe that on the
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boundary between sectors n changes abruptly from nI to n2, Xn addition,

0 we assume that lhnear sections exist. If we do not deo*40 a specific

accelerator, but are interested in the singularities of the motiOm,

these two assumptions are not essential. Xt Is easy to tale Into as-

count the i1e4r sections, and also the tranition region betwenn

and n2. In such a case, however, the formula and the calculation be-

cme much more complicated, although the character and the singularl-

ties of the motion do not ohange.

When nXAr << 1 the equation of motion has the farm

x"+•-, •'-h~o,(4)

where

S-,- for radial motion"1 •-- for vertical motion

- -for radial motion

for vertical motion

Generally speaking, Eqs. (4) have a small range of applicability

with respect to X/R in the case of very large n. However, if the law

governing the fall-off of the magnetic field is specially chosen, the

range of applicability of (4) will be appreciably larger. The nonlin-

ear terms become significant only in the investigation of resonances.

The solution of Eqs. (4) has the form

Z x,=A sin%+Bcos Sb; (5)

where X, and X2 are the solutions for the focus1ig and defocusing sea-

tors, respectively. The constants A; B; •;T) are interrelated by the

conditions for the continuity of the solution. The angle * ranges

0 to v in each sector:

C•p(At-L;,); D=-•+Bc, (6)

f-1where
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fig- 69. Asrmnaqnt of the a oelerator

magnots in strong focusing. 1) etc.

rat us introduce a variable. L,, which changes by unity on gping

from one pair of sectors to the other (see Pig. 69). We shall assLm
that A; B; Us ) awe functions of this variable. Then the continuity

conditions yield the tollowing two difference equatolns:

A.o ,•+P..I+B.t 2C.-Ps J-L.t.i; (8)

We shall henceforth use the notation:

A,= v; e,= ch*1-,. (9)
Te solution of (8) Is sought in the form

A.=emzd+ c.cdil.I 0 $+G.0. (10)

We substitute (10) in (8) and equate the determinate to sea., ob-

taiing(

Expanding corn I in powers of v, we obtain

where

20- me) for radial motion
for vertical motion.

It Is neen from (8) that

(12)

where h= ""+t'" .... " 7 )
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The solution of (8) can thus be written in the form

0 =D~e`t(6+ DO, (5)am F. tO)GUR C41 (13)

#InG+jMOs for the focusings seotor

*MM 'IUL111 p(O-/8Ia)b%0++ (8+/c) h fOr the defocusing sector.

The normalizing coeffiolent of the function # is chosen such as

to alms the Wronsklan or the functions # and #0 equal to 2/1.

The condition for the stability of the solution (13) is the in-

equality

lCCIl~t. (14)

If the number of sectors 2N tends to infinity, then the condition (1i4)

Is equivalent to the ordinary condition (1), written out for n o

" " =- (15)
0<Xip<1.

This condition can be obtained from (11') and (14) by discarding

from (111) the terms with powers v and above.

When N is finite and the values of o1 and K2 are large, the Ulmits

of the inequality (15) broaden appreciably:

amp< no, <amp (16)

2 4When n v < 6 we get approximately

12(t (17)

where

6 < n2v4 < 12.3, then
I nst a mM

*fpml P-- - ; I.p N '-T _(1?,)
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When 12.3 < n2v4 < 22 there in no oommon stability region for the

vertical and radial osoillAtions. The stability region (16) reaches a

*Udlmu at appr'oximitily .

A plot of the stability region is shown in Fig. 70.

.00.

" 'I

Fig. 70. Principal region of sta-
bility of the free osoillations.

4In
'V I -11 V W

Fig. 71. One of the stabilityregions for lare values of nv2.

in addition to the 71.ion of stabhletaiityh respet to n, which

in caunmon to the radial and vertical oscillations, we introduce a re-

gion for the separate stability of the vertical and radial osoilla.- )
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tions, An and Anp

We then have approximately' for n2v4 < 12.3:

MPOt-o Sim) 2
J7-' Aloii rX i •

For very large n, there exists an infinite series of stability re-

gions in the places where cos Wv - 0. Figure 71 shows one such re-

gion. The practical significance of such a region was clarified later

on for one of the types of strong-focusing accelerators (201, proposed

by A.A. Kolomenskly, V.A. Petukhov, and M.S. Rabinovich.

S3. Envelope of Particle Trajectory

Knowledge of the stability boundary is still not sufficient to de-

termine the extent to which the use of the proposed method of improv-

ing stability is advantageous. For a correct understanding of the char-

acter of the phenomena it is necessary to calculate the envelope of the

particle trajectory.

As indicated in Chapter 2 (page 96), the amplitude of the particle

oscillations at an azimuth G in*:

1+" (19)P' =VriOJ(4,ai +1 (f',)(T -- T.o)J, (19)

where y is the angle of entry of the particle into the accelerator

chamber, Xnach is the initial deviation of the particle from the equi-

librium orbit, and 8. is the azimuth of the injector. We shall show

that for the accelerator under consideration Relation (19) is also ap-

plicable.

With the aid of Relation (19) we can answer several Important

C questions.

1. The influence of the deviation of the angle of emission of the
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paztiole from the optimal direction on the amplitude oa the osoill•-.

tions must be known so as to calculate the collisions between the per-

tldes and the injeotor. ,This Influence is determi0ned by the factor | )
r( ei).

2. The injeotion efficiency is also determined by the change in

the angle Topt during the course of the Injection, provided the angle

Topt Is not very small.

3. Ohe dimension of the accelerator chamber depends also on the

function O(S), which determines the collisions between the particles

and the chamber walls.

Let us proceed to determine the envelope. Assume that the injeo-

tor is placed at a certain azimuth i - 0; m - 0. The Initial devia-

tion from the equilibrium orbit was denoted Xnach and the angle of par-

tiole emission by y:
X , I / X \

Then we have, in accordance with (13),

S(O• +D.j'(OJ =L-,; (2o)

DV (4,) + D*. (,)-= 1-, rAe =.

from (20) we readily obtain

D.-- [ .,,"(,-nr,(,.

The oscillations at a certain azimuth 0 are, in accordance with (13),

sinusoidal with frequency Ng. The square of the oscillation amplitude

is
r,(O) 4I 1 ÷(o) I'i--I Xu.,,' (fi,) --R;t•(O,)lI • (,,) .• (a), (21)

Recognizing that the Wronskian of the functions V and ** Is equal

to 2/1, we transform (21) into
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The optimal angle of emission of the particle from the injector

o will be defined as the emission angle for which the amplitude of the

oscillations is minimal. It is seen from (22) that

a--• 7 •.e.L-- dm )1 ~ (23)

where we introduce the notation

b () .) * () (24)

0(0) is the modulus of the Floquet functions., Substituting (23) and

(24) into (22), we obtain the sought-for formula (19), if we put

1 (0,) = R41(4,). (25)
Thus, to determine all the properties of the envelope it is nec-

essary to calculate only one function, *(e). Indeed, the equation of

the envelope (19) can now be rewritten in the form

P.(0 =4 ((i) [Z2 IPb(0)( Xleal d In 0(0j) (26)
T. .+ () I +

The expressions for O(e) will be obtained with the aid of (24)

and (13). We first consider 01(e) in a focusing sector.

After several transformations we obtain

,=: (0)+`2 ",(', + ) Icos%, (v, - 20-)- ch, (27)

where

01 (0) = + P, f"t (28)

In the derivation of (27) and (28) we used the following identi-

ties, obtained from (12):

7 -=' c,+p .81 .c. (29)

As can be seen from (27), -l0e) has a maximum at the center of

the focusing sector:

4) IN (0) + S.0-00+ (0)

Let us call attention to the fact that 01(0) - 03(V).
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a)

Fig. 72. Modulus of the Floquet
function of the tree-osoilla-
tion equation in the center of
the stability region ($v - 1.5;
nI + n2 m nor - 0): A) focus-
ing sector; B) defocuinn• neo-
tar; 1) 11)/v VII 8lv

Fig. 73. Plot of the function
2F3 (1, 5, 0, 0) - l/Tv[d In 0(e)/de]
vs. the azimuth 8 in the center of
the stability region (9v - 1.5;
nor -0): A) focusing sector; B)
defocusing sector.

Let us consider the envelope in the defocusing sector.

4),(, 4 , (-- ,)-- , IC,%--ch (,-2(i)J. (31)

In the derivation of (31) from (24) we used the identity

i1.!6+,' (32)

As can be seen from (31), 02 (e) has a minimum at the center, of

the defocusing interval. The minimum value is

®.(•) = ,.(et-.IX,-I + A 33S(33n IL )
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A plot of :.t.e •a... . ± shown in Fig. 72 for the case when

o no - 0 and vW-n - 1.5. Figure 73 shows the values of the logwit•sluo

derivative of O(e) for the same case.

The ratio of the maxium of O(e) to its minimum is

am + *,1 . (34)

For the values of the function O(e) and a given above we can pre-

sent several approximate expressions, which are convenient for estimat-

Ing purposes; this will be done below.

If the particles are injected into the chamber from the start of

some sector, then in calculating the collisions with the injector it

is necessary to take into account the value of 0(O). In the problem of

collisions with the walls, the quantity 01 (v/2) assumes the same role.

But these two problems are closely related with each other. Indeed, we

should place the injector at such distances from the orbit, as to maks

the particle not collide with the wall. The change in distance between

the orbit and the injector also greatly influences the number of paz-

ticles colliding with the injector. Therefore, by way of an estimate

of the "convenience" of the focusing method proposed, we Introduce the

concept of "effective radius of the accelerator."

This "effective radius" will have a somewhat different value for

radial than for vertical oscillations. In ordinary accelerators we have

2- for vertical oscillations

- - for radial oscillationsS~(35)

which is always somewhat larger than the geometrical radius R.

The quantity O1(v/2) can be represented in the form:

.0 = 0s
7 (j)vi(z; a); ¢=nop~f. (36)

The focusing is the same vertically and radially, if nor - 1/2
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and a - 1.v 2 /2 m 0. Let us consider therefore the function

2,,, I o ( + =-T+...)

'/i-a-+ ...

A plot of the function FI(x; 0) Is shown in Fig. 74. The function

Fi(z; 0) reaches a minimum when x- nl 2 - 2.25. The minimum value of

1I(x; 0) is

mrnP,(z; 0)=3,026. (37)

Near the minimum, the function PF(x; 0) changes very little. For ex-

ample, in the interval

1,2 <n < 3. (38a)

the function F 1 (x; 0) changes by not more than 30%, .while in the in-

terval

1.7 < < 2,8 (38b)

it changes by not more than 10%. Outside of these intervals, partiou-

larly toward larger values of nv 2 , the function F1 (x; .0) increases

rapidly. For example, when nv2 = 3.497 the function is F1 - 16.6 and

it becomes infinite when nv2 = 3.516.

Thus, if we choose x2 - nv2, say in the interval (38b), we get

Ref - 3VR.

For example, for the accelerator first propdsed for the Brookhaven

laboratory (v = 2.62.10-2), Ref .R/13, if 2500 < n < 4100. In an or-

dinary accelerator with n - 0.6 we have

- 1.6 R for radial oscillations
Ref 1.3 R for vertical oscillations

Thus, the effective radius of a strong-focusing accelerator In

approximately 17-20 times usaller than for an ordinary accelerator

(for the data of the hypothetical Broolkaven accelerator). Later on It

became necessary to reduce somewhat the focusing in the projected

. strong-focusing acceaerato.s, so as To decrease the reqaured accuracy
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Fig. 74. Plot of the functions
FO, F1, and P2 for nor -O.

with which the magnet had to be manufactured. In these projects Ref I

nearly five or six times smaller than R. Let us assume that the sector

subtends an angle v which varies in inverse proportion to the raiuts R,,

and then Ref remains constant, and the optirmu value of n along with

the stability region varie s in inverse proportion to the square of R.

The oscillation frequency in the range of values (38b) Is approx-

S~imately N M N/2 = 7r2/2v, i.e. ,' N/4 times larger than the revolution

i frequency.

In analogy with the preceding, the functions 0 2(V/2) and 01i(0)

can be written in the form

4)(x avF (; ) (39)

A plot of the functions F0(x; 0) and F 2(x; O) is shown in Fig. 74. The

function Fo(x; 0) has a minimum at nv2 . 2.75:

S~The function F2(x; 0) drops to zero at the limiting value x - 4,fn-V

S- 1.875.
• -- The angle ryopt, defined in (23), can'be represented in the form
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Fig. 75. Dependence of the
function 3 on x 2 - nv2 for

nor- 0 and 0- 0.

71AWe 73 shows a plot of the function F3 vs. the angle 0 fo r -,

- ,.v - 1.5; a - 0. Figure 75 shows a plot of F as a function ofP3
x2 .nv2 ,when a- nsrv2 - 0 and e - O. If the injector Is placed half-

way between the sectors, then in the Brookhaven accelerator Topt will

change during the process of injection* from 0 to 0.50. If the beam

has a small angle scatter, of the order of several minutes, then the

particles will be captured only during a small fraction of the time of

the injection process (i.e., the process when the orbit is constricted

from the injector to the center or the accelerating chamber). This

phenomenon can be avoided by placing the end of the injector in the

middle of some sector, preferably in the middle of the sector where

n 1 < 0. Indeed, at any azimuth we have

a) *(0 .when u<R#;

b) W1) < o. when xaaaq > R~o#.

Case "b" in realized for the radial oscillations, and case "a" for the

vertical oscillations, Consequently, the amplitude of the vertical os-

cillations is minimal if O(G0) is minimal, and the amplitude of the

radial oscillations in minimal when 0(0.) is maximal. This is precisely

the situation in the middle of the sector where n1 < 0.

In practice, it becomes necessary to forego prolonged injection

in strong-focusing accelerators. The particle is captured in the aooel- )
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eration mode only during one particle revolution.

14. Azimuthal Asyamtry

It the magnetic field along the equilibrium radius deponds on the

azimuth S

o<e<2*,' HMO•: e)W,,O(Rjt, t.+.h (G)]. (41)

then, as is well known, in first approximation the equations (4) as-

sume the form

Y."+ 1 +'(R) x=--h (e8). (42)

where

in focusing sectors
in defocusing sectors.

Let us consider the Stum-Liouville equation

X" + 1-' (e) +kxi Xo. (43)

Let us find the elgenfunctions and the elgenvalues X from the con-

dition of the periodicity of the solutions

Z (0) = Z (2c); 7.'(0) = y'(2c).

We can use the general solution obtained in S2 if we make everywhere

the following substitution:

The periodicity conditions stipulate that • - 2vk, i.e.,

coe,&=c2vk=c•)s•+• Acvh €--', (44)
A& shoi737-A ab A G1 - A

where
-\ " (, + "op) 0,(45

Solving the transcendental equation (44) we obtain the speotrum

of the eigenvalues Xk"

For the case Ak << 1 and x 2 < 12 we obtain approximately with the
CIf aid of Formulas (18) or (11') a total of N values of X.
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-• i--4,+ Anf slis vkl" f+

sie__-1 (146)

When v -. 0 th e lgenvalue -X goes over into the ordinary denlminator I)
in the Fouwler coefficients of the distortion of the equilibrium orbit

+lk -*k2 - 1 + nor'

In ordinary accelerators an important role is played by the smallest

value X. In our case other smallest Xk play an appreciable role.

We have obtained only N elgenvalues. The others are obtained from

(44) graphically. However, they are large and therefore play a small

role.

Whereas the first group of N values of Xk corresponds to the

branch cos gP =- 1 on Pig. 70, the second group of N values of Xk Will

correspond to the branch cos g P -l on Fig. 71, etc.

The periodic solution of the initial equation can be written In

the form

....
,.A • (1) (),

S~.. ....... •.:,.•

where t,(e) is the eigenfunction of Eq. (143). As can be seen from (47),

an Important role is played in this series only by the terms where X

is small. The vanishing of XI occurs at certain resonant values of a.

Obvlously, n should be chosen halfway between the successive resonant

values.

We note that we are considering here only the first-order reso-

nanoes, corresponding In an ordinary accelerator to the vanishing of j.

Parametric resonance sets in also under the indicated values of n and

furthermore halfway between them. There exists also a large number of

linear and nonlinear resonances. For their analysis it is most con-
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ve:nlent t.o uswe the method or av•r'aging difference equations, developed

in Chapter 4. Calculation shows that as a rule one aeiiot so through
the resonance and that It is necessary to choose and maintain during

the acceleration process nonresonant values of n. The presence of MWq

strong resonances produces specific ditfioultles in the eonstw St
of a strong-focusing accelerator.

Without. carrying out detailed calculations, we have explained why

the presence of resonances greatly increases the demands on the accu-

racy with which strong-focusing accelerators must be built. The Inven-

tore of strong focusing did not call attention in their papers to the

possibility of resonances, so that their preliminary estimates were

too optimistic. They chose by way of an accelerator example an accel-

erator with very large =rez, at which value the accelerator will

obviously not operate. We were the first to call attention, in 1952,

to the role of the resonances.

Putting nsr = 0, we obtain for v <« 1 the resonant values of n
sin vk---.

3If nk - %//v 2 , which corresponds to the optimal values of n, then

kpu =-CT s in vkpea-.-•,

where 2N is the total number of all the sectors. In this region, the

neighboring resonant* values are located at distances

' -(48)

The largest value of X in the resonance region will be obtained by as-

suming that n = nk + (an/n). In this case

(49)

Thus, k assumes a rather large value in the interval between

resonances. For example, for the Brookhaven accelerator we obtain
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Xk 20.

However, inasmuch as the distance between the resonances is on the or.-

der 'of v,, this 1165fl5 that ni mulst be held constant to an aO@CwaOY XUdtA e
higher than 2.5. Zn this case the amplitude of the corresponding "har-

moanc" in (47j ) mst not exceed 0. 1%,, since the distortion of the orbit

will amount to 1 am even at this value of the asymmetry, i.e., 20% of

the working region at the start of acceleration and 50% of the working

region at the end of acceleration. If we take into account the pWas-

ence of other resonances, the accuracy requirements imposed on the In-

dex n should be increased by a factor of several times.

In the accelerator whose parameters were given ini the original

paper by Livingston, Courant, and Snyder an Important role will be

played by the asymmetry harmonics in the region k - 30. The first har-

monics, unlike ordinary accelerators, are immaterial.

When work on the investigation of resonances became known in 1953,

it became necessary to decrease appreciably the focusing so as to re-

duce the role of the resonances, and the index n had to be decreased

by almost 10 times. In this case the significant harmonics turn out to

be the eighth to the twelfth.

The data given above are sufficient for a rough estimate of the

influence of the asymmetry.

A more detailed investigation of the azimuthal asyumetry and of

other perturbing phenomena, as well as the calculation of the eigen-

functions, are found in special articles written by many authors.

15. Instantaneous Orbits

go far we have not considered the instantaneous orbit situated In

the center of the chamber. The magnetic field at the center of the

chamber does not depend on the azimuth. On circles with other radii

the magnetic field depends on the azimuth, inasmuch as the magnetic



field index has opposite signs in neighboring sectors. Therefore only

one central instantaneous orbit will be circular in form. Lot us as-

sums that the particle energy remained constant but the instantaneous

field increased by an amount AHO ho - oonst and let us oonsider how

the Instantaneous orbit chaoIes it It was at the Initial Instant In

the center of the chamber.

To solve this problem we can use Eq. (42), in which we put h(G) I

- h0 = const.

We first solve the problem approximately, using the method of the

preceding section. In the present case the only nonvanishing coeffi-

cients in the series expansion (4T) of the solution of Eq. (42) will

be those of the functions whose mean values do not equal zero

S (0). -df') 0'(50)
S

Condition (50) will be satisfied if

9"j-- .', = 0 +•2,l,

where _k and i• are integers, i.e.,
k = 0; N; 2N; 3K, etc.

It is easy to obtain the smallest elgenvalue XO - ncr nsr

, .(51)

Neglecting approximately all the eigenfunctions except 0r, we can write

, • (6) di

Inasmuch as *0(e) differs little from a constant, we have

= ,- (52)

1" Formula (52) serves as a definition for nef:

i M4. (53)
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The Introduced quantity nef plays the role of the usual n in olroulaz'

aocelerators in calculations of the shift of the orbit due to chamges

In the magnetic field, or in the energy, or in the revolution fro- -

quen0y. As can be seen from (53), nef is a large negative numbor.

If the field is constant and the energy chanod, then we should

have in the right half of Eq. (42) ROa/k2 in place of -Roho. Con".-

quently,

p,,= S • A-($_) , (51)

where I is the total energy of the particle. With the aid of the rela-

tion w0 - o"R and Eq. (54) we readily obtain

A.p (55)

Thus, it we introduce nef, then all the usual formulas for the

displacement of the orbit retain their previous form. An acoelerator

with variable n behaves upon shift of the orbit essentially like an

accelerator with a constant negative nef. This fact will be explained

below.

The problem posed in the present section can be solved exactly.

For this purpose It Is necessary either to sum all the terms of the

series (47), or solve the problem anew by the joining method. Ite lat-

ter way is the simpler one.

We shall seek a solution of (42) with h0 M const In the form

-,I" A4. (56)
+I +p) AnI8ELI

in the focusing sectors and

op. (5T)

In the defocusing sectors.
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It is easy to verify that (56) and (57) are really the solutions

of (4 2 ) in the focusing and defocusing sectors for arbitrary values of

p*. The form of the funotions (56) and (57) was chosen such as to mai

p, 1 (v) - p12 (0) and p, 1 (0) - p,'2 (v). Wwre the priM denotes dltferen-

tiation with respeot to the aemle 0. The valu~e or the oonetAnt p* iS

obtained from the condition

pl(v) - P2 (O).

The other necessary equation, p1 (0) - p 2 (v), will be satisfied

automatically. We readily obtain that

""iT 2 (58)pain Cr'''hL T ~ h C" "T•

It is also convenient to bear in mind another form for expressing

p*:

•.~ ~ it, + 0*• e( - 0 - pit 0, - C,01 (59)
=( '-iR. " (I -C-pos I&) "

Thus, the new instantaneous orbit has a form similar to the en-

velope calculated in 53. The maximum value is Wmax- I p(v/2)I and

the minimum 'mInIemin Ip2 (v/2)I. The average value Psr is

From the definition of nef we have

Consequently,

po + +0 V1

If coo P - 0 and nsr = 0 then the exact formula yields
ino= 1-.0,2061n; vVW= .(63.)

(a PFrom the approximate formula (53) wd obtain nef - 1 - 0.2056n. We

see from this that the approximate formula is quite convenient for
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and~~~ soali than (II) 7heav

erage rau t h cter of

we go

-I

-7

Fig. 76. Instantaneous orbits
with radius larger than (I)
and smiluer than (II) the av-
erage radlus at the center ol
the stability re rion ( by - t v/2
and n e= : A) ocusin sec-
tor; B) derocus)ng sector.

S practical calculations. In this case, i.e., when cos . -- 0 and n 0,
Swe get

As can' be seen from (62) and from FPig. 76, the shitt in the in-.

stantaneous or'bit p(e) dltters at the most frzom Pe, by appoltelFy

_+03 pes:

It is now easy to understand why oiuwrc f ulas ror the displace-.

Dent or the orbit contain not n*1 but net.

Indeed, the average value or the tield on a circle shitted fo

the central one by an amount Psr is determitned by the value ot ew
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But the particle does not move along a circle with radius R0 + PsrV

but Moves on a WaVY orbit, defined say by 2q. (56) and (57) or (6)
and Fla. 76. In both sectors (focusing and defocusing) the pMatiole

deviates from a ofrole with radius (,• + p.,) toward the direotion

*hr*e the field decreases If Por > 0 or Inereases, If p. < 0. 2huss at

large radii (Psr > 0), the particle moves effectively in much veasr

fields, and at small radii (Psr < 0) It moves in much stronger fields.

For example, in the case considered above (corn I - 0) the partiole de-

viates in the mean from a circle with radius RO + per by 0 . 2 Psr** Con-

sequently, the average field on the orbit Is

HBr (on orbit):I(R.ri-%.+--.--]

and nef - nsr- 0.2n. Thus, we again obtain Formula (61).

-4

'.7

Fig. 77. Envelope of the par-
ticle trajectory (I) in the
center of the stability region
(xv -= r/2 and nor - 0) for a
shifted instantaneous orbit
(IW). The average orbit (III)
is situated at p - -5: A) focus-
ing sector; B) defocusing sec-

_ tOr.

The results of 13 remain in force if we measue the displacemnt
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from the now orbit, and the angles from the direction tangent to thIs

new orbit. As a 3esults the tamofta the envelop, become distorted.

IM direction of, thie Optd~al angles at paticle emission chor4e. Pg

upe 7'Tshows the enve lope tor the case *whn per aid the aqoltuft of

the Oscillations aMe appa'oximatelY equal to each other.

16. the Phase @ o

To derive the phase equation it is essential to know how the wov.

olutiori period changes with changing particle enrgyW.

Mm calculating the length at the particle trajectory It Is pos..

sible to replace the instantaneous wave-lila. orbit (see 15) by a oir-

ole with average radius.* Thus,, upon change in the average radlius by

Pirthe length at the orbit increases by 2Irper. The resultant error.

is small. For example, the true Increment in the orbit 6a when cos I.L

-0 lies between the two close limits:

2up,p < as < Uip., (I + 0,5

Neglecting the second-order correction wpara'3P, we obtain a

phase equation which difters from that tor an or~dinary accelerator in

only one respect: na is replaced everywhere by ner. Indeed,, as was

shown many times, the phase equation can be derived from the relations:

T= - ; W

where T is the period at revolution, V0 the sum at the voltage ampi..

tudes on all the accelerating electrodes,, 9 is the phase at the olec.

tric tield and the Instant at passage through the accelerating gap,

and A(R, t) is the average tield along the Instantaneous orbit with

average radius R. After usual calculations we obtain the phase equatiou

d[ 8,isCsVeCsJ (63)

where k~. 1*-J- ~ (64~)
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w0 is the frequency of the accelerating electric field;

0 .( ()J)
Ova ~ ~ I ca *0-9

Here R0 is the average radius of the orbit, on which the revolution

frequency is wo. The quantity 6 is equal to the ratio of the derivative

of the magnetic flux through the orbit with radius R0 to the quantity

27r o(R0, t).

The entire difrerenoe between the phase equation (63) and the or-

dinary equation lies in the value of If. In the nonrelativistic ca"me

• - 0, Infl >> 1] we have

where W in the kinetic energy. In the relativistic case [(1 - <<) «
<< 3l/nf .] we have

Thus, for a certain energy R., the coefficient Kof vanishes:

If we choose n and v such as to mak con s 0 and nr - 0, then
-7.43, (66)

As was already pointed out by us [10], when kef < 0 the stable

phasing point is the phase -ToC (on the rising portion of the accelerat-

ing voltage), and the unstable phase is FqO. When the sign of kCf re-

versess +q0 and -90 interchange their roles. The unstable phase is --0o

and the stable one +q0"

Equation (63), as is well known, is the equation of the pendulum
with "effective mass" Okef . At the start of the acceleration

process the "effective mass" of the pendulum has a negative value. This
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means that in the present case any instability point becomes stable

for positive "mass" and vice versa. As the acceleration increases, the

absolute value of the "Offective mass" of the pendulum increases. Tfil)

causes the oscillation frequency to decrease and to tend to mers when

the total particle energy tends to a value Akr. Simultaneously, the

ampl4udes of the phase oscillations become rather strongly attenuated.

Consequently, when the particles reach energies Ewk, all the particle

phases freeme in place, so to speak, in the region of the point --90.

Owing to the small value of the phase velocity, the swing of the

radial-phase oscillations increases strongly, since the averaging of

the particle energy occurs only over the period of the phase oscilla-

tions, which is very long. With further increase in energy, the par-

ticles gradually begin to move. Those particles which were in the sta-

bility region, begin to execute rather large phase oscillations about

a new equilibrium point +v0" At the same time, inasmuch as the "effec-

tive mass" of the pendulum, which has become positive, decreases

strongly, the amplitudes of the phase oscillations, which are large

enough as it isbuild up strongly.

The indifferent equilibrium position of the pendulum involves, as

the ;nergy Increases to Bkr, additional hidden dangers connected with

various perturbations, which can cause strong particle losses owing to

the absence of a potential well for the pendulum.

It Is therefore desirable to have the maximum energy for a given

acceleritor lower than Ekr, or else to get rid completely of the re-

alignment of the phase region with the aid of special sectors with mag-

netio fields directed opposite to the main field.

If this cannot be done for some reason, it is necessary to change

at the corresponding Instant of time the phase of the accelerating

field by 2%0 . Inasmuch as the frequency of the phase oscillations is )
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very small at thatinstant, the change in phae can be carried out suf-

o foliently slowly.

I addition, as will be SOM• at~d below, it Is noeesserr ttS# 't0

rate of change of the enersy be large at that Instant of t#0e.,

As As Mom tMcthe theWY Of th$e FMoU ssh3oPwtaM am emW

Aw'in the frequency shifts tip.equilibr$n radius of the orbit bY=

amount A£tO, with

(67)
* -V,•(-. • no*))

The denominator in the right half of (6T) Is large if (1 - OP >>l/%

This means that at low energies larger deviations of the freqnenoy from

the exact law are permissible. However, later on the denominator of

(67) decreases and vanishes when 3 - Ri. The change in the radium of

the orbit at that point is determined by the value of anef/aR. 3h any

case, the requirements imposed on the accuracy of the frequency during

that period will be exceedingly high. But even before that, whe the

denominator is equal to -10, the accuracy with which the frequency Is

to be maintained in the Brookhaven accelerator should be much lower

than 0.1$. We denote the energy at which the denominator of (67) Is

equal to -- k by Bk:

(68)

A plot of the function net + e'(l - nef) in shown in Fig. 78.

The radial dimension 2O of the separatrix separating the stable

oscillations frcm the unstable motion is, as im well known,

2elli n %1f- 0CLq To
2f =2R4(69)

in the nonrelativistic case we have

For exaaple, at energy Wti•4 Yv and eV 0 sin 9 0 - o•ae It0
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10o4 ox. and nr--74o,, vs obtain

* 4

#!

As the e"orgy ,mreoass, the sao .)
'O the sepsttlz first Georeasse s, - th"

£mmU05508.s"O that w•en £ - Um it te4aces

"In-inIt•O. S fact that the ,partrlx be-

... o.•io s f Z1nIp •in also still mans notifag,
A

since the frequenoy of the phase 0oo lia-

tions vanishes at 'the saw tIMn. However,

Dsw enee of the rate of change of energy must be suffl-

ratio of the total
SII to the rest lost near the energy Bit, owing to the in-
energy N (net - -740).

crease in the radial-phase osoillat6ols.

For example, 'at an energy

where V1 is the Injection energy, the als of the separatrix will be

equl to its alse at the start of acceleration.

Let us consider small phase oscillations. Their amplitude qLnSD

as is well Imown,, varies In proportion to 1/1 :

(70)

This formula is valid only away from the energy Z W since near

Sthe adiabaticity condition

(71)

is not satisfied, whee ore is the frequency of the small phase oso123a-

ZIn calculating the change In the amplitude of the oscillations in
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the region of iR it in necessary to use other methods, and L psaWtlo-

O ular9 the answer may be obtained by the method which aees A17 fWW-

tions.

Mhe amplitude PA of the small radial-phase ooillaticrs Is
#A S 

I I I1 * __ _ __,_riit

1- y..,l + 23,'•..+-a4,)Kt - *s* "

Thus# the amplitude of the radial-phase oscillations OhaWes in

proport ion to

I " -W -+( %*)I SWO $in f '

Consequently, the amplitude of the radial-phase oscillations first

decreases rapidly and then, in the region of 3inc. reases.

A more detailed Investigation of the phase equation in the region

of Kr has been the subject of many recent papers (21].

In 1953 the author, together with A.A. Kolomenskiy and V.A. Petu-

dkhov, has shown that it is possible to build a strong-focusing system

without a critical energy. In particular, there Is no critical energy

in one of the versions of the annular synchrooyclotron.

From the discussions given above it follows that there is no orlt-

ical energy if kef does not reverse sign. Inasmuch as 1 f Is negative

at sufficiently low energies and large nef, it should be negative also

when p2 -1. This is possible if nef > 1.

A large positive net denotes that in the given magnetic field the

particles with the higher energy move along an orbit with a smaller

perimeter. It is particularly convenient to change the perimeter in

the desired direction by introducing sectors in which the magnetic

field has an opposite direction.

This problem is treated in the papers by A.A. rolcmnskly (251,

SV.V. Vladimirskiy and Ye.K. Tarasov (31].'In particular, the latter

was able to find the most effective variants for the elimination of
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the critical energy, wherein the perturbing sectors with oppositely

d41mted fields are ;nstalled with a period which is apwroxmately

eoql to the perlo ot the tree oscillations. )

bism-

e[e(Footnotes J

224 Znammsah as we aev not considering the linear seotios here,
it Is convenient to introduce the angle 0 In plaoe of the
dimenslonless length a.

221 The change In nopt during the injection process will actu-
ally be even larger If one taims Into account the foam of
the displaced instantaneous orbit, as was done In 15.

224I In the general case the*~ adj~ muadim value of
A. In the resonance region is

230 This Quality In obtained by a•v•eX ne of the exprslions
In the square brackets in (62

S~Nana-
script [List of Transliterated %Ambols]
page

So.

211 op o sr = aeduly - average

214 Ham - nach - nach•°l•ry - initial

21.1 OPT a opt - optm.l'avyy - optiml

224 pea a res - rewSozAnmn a reonant

226 Xp kr kriticheskiy -critical

226 a f a effektivny = effective
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